在極坐標(biāo)系中,求曲線與的交點(diǎn)的極坐標(biāo).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
在直角坐標(biāo)系中,圓的參數(shù)方程為參數(shù)).以為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系.
(Ⅰ)求圓的極坐標(biāo)方程;
(Ⅱ)直線的極坐標(biāo)方程是,射線與圓的交點(diǎn)為,與直線的交點(diǎn)為,求線段的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)直線的參數(shù)方程為(t為參數(shù)),若以直角坐標(biāo)系的點(diǎn)為極點(diǎn),軸為極軸,選擇相同的長(zhǎng)度單位建立極坐標(biāo)系,得曲線的極坐標(biāo)方程為ρ=.
(1)將曲線的極坐標(biāo)方程化為直角坐標(biāo)方程,并指出曲線是什么曲線;
(2)若直線與曲線交于A、B兩點(diǎn),求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,已知曲線,過點(diǎn)的直線的參數(shù)方程為:,(t為參數(shù)),直線與曲線分別交于兩點(diǎn).
(1)寫出曲線和直線的普通方程;
(2)若成等比數(shù)列,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分10分)
已知在直角坐標(biāo)系中,圓錐曲線的參數(shù)方程為(為參數(shù)),定點(diǎn),是圓錐曲線的左,右焦點(diǎn).
(Ⅰ)以原點(diǎn)為極點(diǎn)、軸正半軸為極軸建立極坐標(biāo)系,求經(jīng)過點(diǎn)且平行于直線的直線的極坐標(biāo)方程;
(Ⅱ)在(I)的條件下,設(shè)直線與圓錐曲線交于兩點(diǎn),求弦的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(,為參數(shù)),在以為極點(diǎn),軸的正半軸為極軸的極坐標(biāo)系中,曲線是圓心在極軸上,且經(jīng)過極點(diǎn)的圓.已知曲線上的點(diǎn)對(duì)應(yīng)的參數(shù),射線與曲線交于點(diǎn),
(1)求曲線,的方程;
(2)若點(diǎn),在曲線上,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分10分)
已知曲線,直線
(1)將直線的極坐標(biāo)方程化為直角坐標(biāo)方程;
(2)設(shè)點(diǎn)在曲線上,求點(diǎn)到直線的距離的最小值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在極坐標(biāo)系中,已知曲線
設(shè)與交于點(diǎn)
(I)求點(diǎn)的極坐標(biāo);
(II)若動(dòng)直線過點(diǎn),且與曲線交于兩個(gè)不同的點(diǎn)求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
如圖所示,在△ABC中,MN∥DE∥DC,若AE∶EC=7∶3,則DB∶AB的值為( )
A.3∶7 | B.7∶3 | C.3∶10 | D.7∶10 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com