【題目】如圖,某地一天中6時(shí)至14時(shí)的溫度變化曲線近似滿足函數(shù)y=Asin(ωx+φ)+B(其中 ),那么這一天6時(shí)至14時(shí)溫差的最大值是°C;與圖中曲線對(duì)應(yīng)的函數(shù)解析式是 .
【答案】20; ,x∈[6,14]
【解析】解:(1)由圖示,這段時(shí)間的最大溫差是30﹣10=20℃,(2)圖中從6時(shí)到14時(shí)的圖象是函數(shù)y=Asin(ωx+)+b的半個(gè)周期,
∴ =14﹣6,解得ω= ,
由圖示,A= (30﹣10)=10,B= (10+30)=20,
這時(shí),y=10sin( φ)+20,
將x=6,y=10代入上式,可取 φ= ,
綜上,所求的解析式為 ,x∈[6,14].
所以答案是:20; ,x∈[6,14]
【考點(diǎn)精析】利用三角函數(shù)的最值對(duì)題目進(jìn)行判斷即可得到答案,需要熟知函數(shù),當(dāng)時(shí),取得最小值為;當(dāng)時(shí),取得最大值為,則,,.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)= .
(1)判斷函數(shù)f(x)的奇偶性;
(2)判斷并證明f(x)的單調(diào)性;
(3)求關(guān)于x的不等式f(2x﹣1)+f(x+3)>0的解集.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,命題橢圓C1: 表示的是焦點(diǎn)在軸上的橢圓,命題對(duì),直線與橢圓C2: 恒有公共點(diǎn).
(1)若命題“”是假命題,命題“”是真命題,求實(shí)數(shù)的取值范圍.
(2)若真假時(shí),求橢圓C1、橢圓C2的上焦點(diǎn)之間的距離d的范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某班50名學(xué)生在一次百米測(cè)試中,成績(jī)?nèi)拷橛?3秒與18秒之間,將測(cè)試結(jié)果按如下方式分成五組:第一組,第二組,…,第五組,如圖是按上述分組方法得到的頻率分布直方圖.
(Ⅰ)根據(jù)頻率分布直方圖,估計(jì)這50名學(xué)生百米測(cè)試成績(jī)的中位數(shù)和平均數(shù)(精確到0.1).
(Ⅱ)若從第一、五組中隨機(jī)取出三名學(xué)生成績(jī),設(shè)取自第一組的個(gè)數(shù)為,求的分布列,期望及方差.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知f(α)= .
(1)若α為第二象限角且f(α)=﹣ ,求 的值;
(2)若5f(α)=4f(3α+2β).試問(wèn)tan(2α+β)tan(α+β)是否為定值(其中α≠kπ+ ,α+β≠kπ+ ,2α+β≠kπ+ ,3α+2β≠kπ+ ,k∈Z)?若是,請(qǐng)求出定值;否則,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直三棱柱中, ,點(diǎn)分別為的中點(diǎn).
(1)求證: 平面;
(2)求三棱錐的體積(錐體的體積公式,其中為底面面積, 為高)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列的前項(xiàng)和為, .
(1)求數(shù)列的通項(xiàng)公式;
(2)令,設(shè)數(shù)列的前項(xiàng)和為,求;
(3)令,若對(duì)恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn),圓,過(guò)點(diǎn)的動(dòng)直線與圓交于兩點(diǎn),線段的中點(diǎn)為為坐標(biāo)原點(diǎn).
(1)求的軌跡方程;
(2)當(dāng)時(shí),求的方程及的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,ABCD﹣A1B1C1D1是正方體,E,F(xiàn),G,H,M,N分別是所在棱的中點(diǎn),則下列結(jié)論錯(cuò)誤的有
①GH和MN是平行直線;GH和EF是相交直線
②GH和MN是平行直線;MN和EF是相交直線
③GH和MN是相交直線;GH和EF是異面直線
④GH和EF是異面直線;MN和EF也是異面直線.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com