【題目】已知橢圓E的中心在坐標原點O,兩個焦點分別為A(﹣1,0),B(1,0),一個頂點為H(2,0).
(1)求橢圓E的標準方程;
(2)對于x軸上的點P(t,0),橢圓E上存在點M,使得MP⊥MH,求實數(shù)t的取值范圍.
【答案】(1);(2)(﹣2,﹣1).
【解析】
試題(1)由兩個焦點分別為A(﹣1,0),B(1,0),上頂點為D(2,0),得到橢圓的半長軸a,半焦距c,再求得半短軸b,
最后由橢圓的焦點在X軸上求得方程.
(2)利用向量垂直即可求得M點的橫坐標x0,從而解決問題.
解:(1)由題意得,c=1,a=2,則b=
故所求的橢圓標準方程為;
(2)設(shè)M(x0,y0)(x0≠±2),則①
又由P(t,0),H(2,0).則,
由MP⊥MH可得,即(t﹣x0,﹣y0)(2﹣x0,﹣y0)=
由①②消去y0,整理得②
∵x0≠2,∴
∵﹣2<x0<2,∴﹣2<t<﹣1
故實數(shù)t的取值范圍為(﹣2,﹣1).
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
已知函數(shù)f(x)=x3+ax2+bx+c,曲線y=f(x)在點x=1處的切線方程為
l:y=3x+1,且當(dāng)x=時,y=f(x)有極值.
(1)求a,b,c的值;
(2)求y=f(x)在[-3,1]上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正四棱錐S-ABCD中,E,M,N分別是BC,CD,SC的中點,動點P在線段MN上運動時,下列四個結(jié)論:①EP⊥AC;②EP∥BD;③EP∥平面SBD;④EP⊥平面SAC,其中恒成立的為( )
A.①③B.③④C.①②D.②③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方體中,是棱上動點,下列說法正確的是( )
A. 對任意動點,在平面內(nèi)不存在與平面平行的直線
B. 對任意動點,在平面內(nèi)存在與平面垂直的直線
C. 當(dāng)點從運動到的過程中,與平面所成的角變大
D. 當(dāng)點從運動到的過程中,點到平面的距離逐漸變小
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右焦點在軸上,中心在坐標原點,長軸長為4,短軸長為.
(1)求橢圓的標準方程;
(2)是否存在過的直線,使得直線與橢圓交于,?若存在,請求出直線的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四邊形ABCD由Rt△ABC和Rt△BCD拼接而成,其中∠BAC=∠BCD=90°,∠DBC=30°,AB=AC,,將△ABC沿著BC折起,
(1)若,求異面直線AB和CD所成角的余弦值;
(2)當(dāng)四面體ABCD的體積最大時,求二面角A﹣BC﹣D的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】重慶近年來旅游業(yè)高速發(fā)展,有很多著名景點,如洪崖洞、磁器口、朝天門、李子壩等.為了解端午節(jié)當(dāng)日朝天門景點游客年齡的分布情況,從年齡在22~52歲之間的旅游客中隨機抽取了1000人,制作了如圖的頻率分布直方圖.
(1)求抽取的1000人的年齡的平均數(shù)、中位數(shù);(每一組的年齡取中間值)
(2)現(xiàn)從中按照分層抽樣抽取8人,再從這8人中隨機抽取3人,記這3人中年齡在的人數(shù)為,求的分布列及.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,正方體ABCD-A1B1C1D1的棱長為1,線段B1D1上有兩個動點E、F且EF=,則下列結(jié)論中錯誤的是( )
A.AC⊥BEB.EF平面ABCD
C.三棱錐A-BEF的體積為定值D.異面直線AE,BF所成的角為定值
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com