【題目】重慶近年來旅游業(yè)高速發(fā)展,有很多著名景點(diǎn),如洪崖洞、磁器口、朝天門、李子壩等.為了解端午節(jié)當(dāng)日朝天門景點(diǎn)游客年齡的分布情況,從年齡在22~52歲之間的旅游客中隨機(jī)抽取了1000人,制作了如圖的頻率分布直方圖.

(1)求抽取的1000人的年齡的平均數(shù)、中位數(shù);(每一組的年齡取中間值)

(2)現(xiàn)從中按照分層抽樣抽取8人,再從這8人中隨機(jī)抽取3人,記這3人中年齡在的人數(shù)為,求的分布列及.

【答案】(1)平均數(shù)38.75,中位數(shù) ;(2)分布列見解析,

【解析】

1)分別根據(jù)頻率分布直方圖的平均數(shù)和中位數(shù)計(jì)算;

2)根據(jù)頻率可知在取8人中有2人年齡在,6人年齡在,服從超幾何分布, ,分別寫出概率,并計(jì)算期望.

解:(1)年齡平均數(shù),

中位數(shù)為(歲).

(2)因?yàn)槟挲g在的頻率分別為0.15,0.45,

故分層抽樣抽取8人中有2人年齡在,6人年齡在.

的可能取值為0,1,2, ,

,

,

的分布列為:

0

1

2

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐中,⊥底面,的中點(diǎn).

已知,,.求:

(1)三棱錐PABC的體積;

(2)異面直線BCAD所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓E的中心在坐標(biāo)原點(diǎn)O,兩個(gè)焦點(diǎn)分別為A﹣1,0),B1,0),一個(gè)頂點(diǎn)為H2,0).

1)求橢圓E的標(biāo)準(zhǔn)方程;

2)對(duì)于x軸上的點(diǎn)Pt,0),橢圓E上存在點(diǎn)M,使得MP⊥MH,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知某地區(qū)中小學(xué)生人數(shù)和近視情況分別如圖1和圖2所示,為了解該地區(qū)中小學(xué)生的近視形成原因,用分層抽樣的方法抽取2%的學(xué)生進(jìn)行調(diào)查,則樣本容量和抽取的高中生近視人數(shù)分別是(

A.10010B.100,20C.20010D.200,20

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面是平行四邊形,平面,,的中點(diǎn).

(I)求證,平面;

(II)若,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著移動(dòng)互聯(lián)網(wǎng)的快速發(fā)展,基于互聯(lián)網(wǎng)的共享單車應(yīng)運(yùn)而生.某市場研究人員為了了解共享單車運(yùn)營公司的經(jīng)營狀況,對(duì)該公司最近六個(gè)月(20175月到201710月)內(nèi)在西安市的市場占有率進(jìn)行了統(tǒng)計(jì),并繪制了相應(yīng)的折線圖.

1)由拆線圖可以看出,可用線性回歸模型擬合月度市場占有率與月份代碼之間的關(guān)系.求關(guān)于的線性回歸方程;

2公司對(duì)員工承諾如果公司的共享單車在2017年年底(12月底)能達(dá)到西安市場占有率的,員工每人都可以獲得年終獎(jiǎng),依據(jù)上面計(jì)算得到回歸方程估計(jì)員工是否能得到年終獎(jiǎng).

(參考公式:回歸直線方程為,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】用系統(tǒng)抽樣法從140名學(xué)生中抽取容量為20的樣本,將140名學(xué)生從1140編號(hào).按編號(hào)順序平均分成20組(17號(hào),814號(hào),,134140號(hào)),若第17組抽出的號(hào)碼為117,則第一組中按此抽樣方法確定的號(hào)碼是(

A.7B.5C.4D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】[選修44:坐標(biāo)系與參數(shù)方程]:在直角坐標(biāo)系中,直線的參數(shù)方程為t為參數(shù),),以坐標(biāo)原點(diǎn)為極點(diǎn),以x軸的非負(fù)半軸為極軸,建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為,已知直線與曲線C交于不同的兩點(diǎn)AB

(1)求直線的普通方程和曲線C的直角坐標(biāo)方程;

(2)設(shè)P(12),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓的圓心為,且直線與圓相切,設(shè)直線的方程為,若點(diǎn)在直線上,過點(diǎn)作圓的切線,切點(diǎn)為.

(1)求圓的標(biāo)準(zhǔn)方程;

(2)若,試求點(diǎn)的坐標(biāo);

(3)若點(diǎn)的坐標(biāo)為,過點(diǎn)作直線與圓交于兩點(diǎn),當(dāng)時(shí),求直線的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案