【題目】設(shè)函數(shù),曲線在點處的切線方程為.
(Ⅰ)求、.
(Ⅱ)設(shè),求的最大值.
(Ⅲ)證明函數(shù)的圖像與直線沒有公共點.
【答案】(Ⅰ), .(Ⅱ).(Ⅲ)見解析.
【解析】試題分析:(1)由導(dǎo)數(shù)的定義知, ,求得, ;(2), 在上單調(diào)遞增,在上單調(diào)遞減, 在的最大值為;(3)函數(shù)的圖像與直線沒有公共點等價于,等價于,即,通過求導(dǎo)可證。
試題解析:
(Ⅰ)函數(shù)的定義域為,
由題意可得, ,
故, .
(Ⅱ),則,
當(dāng)時, ,當(dāng)時, ,
∴在上單調(diào)遞增,在上單調(diào)遞減,
∴在的最大值為.
(Ⅲ)由(Ⅰ)知,
又,
∴函數(shù)的圖像與直線沒有公共點等價于,
而等價于,
設(shè)函數(shù),則,
∴當(dāng)時, ,
當(dāng)時, ,
∴在上單調(diào)遞減,在上單調(diào)遞增,
∴在的最小值為,
綜上,當(dāng)時, ,
即,
故函數(shù)的圖像與直線沒有公共點.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)確定函數(shù)在定義域上的單調(diào)性,并寫出詳細過程;
(2)若在上恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中為常數(shù),設(shè)為自然對數(shù)的底數(shù).
(1)當(dāng)時,求的最大值;
(2)若在區(qū)間上的最大值為,求的值;
(3)設(shè),若,對于任意的兩個正實數(shù),證明: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列滿足: , , .
(1)求數(shù)列的通項公式;
(2)設(shè)數(shù)列的前項和為,且滿足,試確定的值,使得數(shù)列為等差數(shù)列;
(3)將數(shù)列中的部分項按原來順序構(gòu)成新數(shù)列,且,求證:存在無數(shù)個滿足條件的無窮等比數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線, ,則下列說法正確的是( )
A. 把上各點橫坐標伸長到原來的2倍,縱坐標不變,再把得到的曲線向右平移個單位長度,得到曲線
B. 把上各點橫坐標伸長到原來的2倍,縱坐標不變,再把得到的曲線向右平移個單位長度,得到曲線
C. 把曲線向右平移個單位長度,再把得到的曲線上各點橫坐標縮短到原來的,縱坐標不變,得到曲線
D. 把曲線向右平移個單位長度,再把得到的曲線上各點橫坐標縮短到原來的,縱坐標不變,得到曲線
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】通過隨機詢問某地100名高中學(xué)生在選擇座位時是否挑同桌,得到如下列聯(lián)表:
男生 | 女生 | 合計 | |
挑同桌 | 30 | 40 | 70 |
不挑同桌 | 20 | 10 | 30 |
總計 | 50 | 50 | 100 |
Ⅰ從這50名男生中按是否挑同桌采取分層抽樣的方法抽取一個容量為5的樣本,現(xiàn)從這5人中隨機選取3人做深度采訪,求這3名學(xué)生中至少有2名要挑同桌的概率;
Ⅱ根據(jù)以上列聯(lián)表,是否有以上的把握認為“性別與在選擇座位時是否挑同桌”有關(guān)?
下面的臨界值表供參考:
參考公式: ,其中
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com