【題目】在直角坐標系中,曲線的參數(shù)方程為(為參數(shù)).以坐標原點為極點,軸正半軸為極軸,建立極坐標系,曲線的極坐標方程為.

(1)寫出的普通方程及的直角坐標方程;

(2)設(shè)點上,點上,求的最小值及此時點的直角坐標.

【答案】(1),.(2) ,.

【解析】

(1)由曲線的參數(shù)方程消去,即可得到直線的普通方程,根據(jù)極坐標與直角坐標的互化公式,即可求得曲線的直角坐標方程;

(2)設(shè)的參數(shù)方程為(為參數(shù)),得到,結(jié)合點到直線的距離公式和三角函數(shù)的性質(zhì),即可求解.

(1)由曲線的參數(shù)方程(為參數(shù)),消去,可得,

,,

又由,代入方程,可得,

即曲線的直角坐標方程.

(2)設(shè)的參數(shù)方程為(為參數(shù)),,.

因為是直線,所以的最小值即為距離的最小值,

,

,取得最小值, 此時.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知曲線的極坐標方程是,曲線的極坐標方程是,正三角形的頂點都在上,且按逆時針次序排列,點的極坐標為,以極點為坐標原點,極軸為軸的正半軸建立平面直角坐標系.

1)求曲線的直角坐標方程及點的直角坐標;

2)設(shè)上任意一點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在某次測驗中,某班40名考生的成績滿分100分統(tǒng)計如圖所示.

(Ⅰ)估計這40名學生的測驗成績的中位數(shù)精確到0.1;

(Ⅱ)記80分以上為優(yōu)秀,80分及以下為合格,結(jié)合頻率分布直方圖完成下表,并判斷是否有95%的把握認為數(shù)學測驗成績與性別有關(guān)?

合格

優(yōu)秀

合計

男生

16

女生

4

合計

40

附:

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1)求函數(shù)的單調(diào)區(qū)間;

2)若函數(shù)的圖象在點處的切線的斜率為1,問:在什么范圍取值時,對于任意的,函數(shù)在區(qū)間上總存在極值?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)的定義域為,若存在一次函數(shù),使得對于任意的,都有恒成立,則稱函數(shù)上的弱漸進函數(shù).下列結(jié)論正確的是__________.(寫出所有正確命題的序號)

上的弱漸進函數(shù);

上的弱漸進函數(shù);

上的弱漸進函數(shù);

上的弱漸進函數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了保障人民群眾的身體健康,在預(yù)防新型冠狀病毒期間,貴陽市市場監(jiān)督管理局加強了對市場的監(jiān)管力度,對生產(chǎn)口罩的某工廠利用隨機數(shù)表對生產(chǎn)的個口罩進行抽樣測試是否合格,先將個口罩進行編號,編號分別為;從中抽取個樣本,如下提供隨機數(shù)表的第行到第行:

若從表中第行第列開始向右依次讀取個數(shù)據(jù),則得到的第個樣本編號為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中取兩個定點,再取兩個動點,且.

(1)求直線的交點的軌跡的方程;

(2)的直線與軌跡交于兩點,過點軸且與軌跡交于另一點,為軌跡的右焦點,若,求證:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,三棱柱中,,,平面.

1)求證:

2)若,直線與平面所成的角為,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】20191017日是全國第五個扶貧日,在扶貧日到來之際,某地開展精準扶貧,攜手同行的主題活動,調(diào)查基層干部走訪貧困戶數(shù)量.A鎮(zhèn)有基層干部50人,B鎮(zhèn)有基層干部80人,C鎮(zhèn)有基層干部70人,每人都走訪了不少貧困戶;按照分層抽樣,從AB,C三鎮(zhèn)共選40名基層干部,統(tǒng)計他們走訪貧困戶的數(shù)量,并將完成走訪數(shù)量分成5組:,,,,繪制成如下頻率分布直方圖.

1)求這40人中有多少人來自B鎮(zhèn),并估算這40人平均走訪多少貧困戶?

2)如果把走訪貧困戶達到或超過25戶視為工作出色,以頻率估計概率,從三鎮(zhèn)的所有基層干部中隨機選取4人,記這4人中工作出色的人數(shù)為X,求X的數(shù)學期望.

查看答案和解析>>

同步練習冊答案