【題目】如圖,三棱柱中,,,平面.

1)求證:;

2)若,直線與平面所成的角為,求二面角的余弦值.

【答案】1)證明見解析(2

【解析】

1)首先由平面證得,根據(jù)四邊形是菱形證得,由此證得平面,進(jìn)而證得.

2)首先根據(jù)“直線與平面所成的角為”得到.為坐標(biāo)原點(diǎn)建立空間直角坐標(biāo)系,通過平面的法向量和平面的法向量,計(jì)算出二面角的余弦值.

1)證明:因?yàn)?/span>平面,所以,

因?yàn)?/span>,所以四邊形是菱形,所以,

因?yàn)?/span>,所以平面,

所以.

2)因?yàn)?/span>與平面所成的角為,

所以與平面所成的角為,

因?yàn)?/span>平面,

所以與平面所成的角為,

所以,

,則,,

為坐標(biāo)原點(diǎn),分別以,,軸建立如圖空間直角坐標(biāo)系,

,,,,,

因?yàn)?/span>,

所以,平面的一個(gè)法向量為

設(shè)平面的一個(gè)法向量為,

,即

,則,,

所以,

所以二面角的余弦值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)橢圓的右焦點(diǎn)為,過的直線相交于兩點(diǎn).

1)若,求的方程;

2)設(shè)過點(diǎn)軸的垂線交于另一點(diǎn),若的外心,證明:為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

(1)寫出的普通方程及的直角坐標(biāo)方程;

(2)設(shè)點(diǎn)上,點(diǎn)上,求的最小值及此時(shí)點(diǎn)的直角坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解某校學(xué)生參加社區(qū)服務(wù)的情況,采用按性別分層抽樣的方法進(jìn)行調(diào)查.已知該校共有學(xué)生960人,其中男生560人,從全校學(xué)生中抽取了容量為n的樣本,得到一周參加社區(qū)服務(wù)時(shí)間的統(tǒng)計(jì)數(shù)據(jù)如下:

超過1小時(shí)

不超過1小時(shí)

20

8

12

m

1)求m,n;

2)能否有95%的把握認(rèn)為該校學(xué)生一周參加社區(qū)服務(wù)時(shí)間是否超過1小時(shí)與性別有關(guān)?

附:

PK2k

0.050

0.010

0.001

k

3.841

6.635

10.828

K2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】《周髀算經(jīng)》中給出了勾股定理的絕妙證明.如圖是趙爽弦圖及注文.弦圖是一個(gè)以勾股形之弦為邊的正方形,其面積稱為弦實(shí).圖中包含四個(gè)全等的勾股形及一個(gè)小正方形,分別涂成朱色及黃色,其面積稱為朱實(shí)、黃實(shí).×+(股-勾)2=4×朱實(shí)+黃實(shí)=弦實(shí),化簡(jiǎn)得勾2+2=2.若圖中勾股形的勾股比為,向弦圖內(nèi)隨機(jī)拋擲100顆圖釘(大小忽略不計(jì)),則落在黃色圖形內(nèi)的圖釘顆數(shù)大約為( )(參考數(shù)據(jù):,

A.2B.4C.6D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給定橢圓C:(),稱圓心在原點(diǎn)O,半徑為的圓是橢圓C的“衛(wèi)星圓”.若橢圓C的離心率,點(diǎn)C上.

(1)求橢圓C的方程和其“衛(wèi)星圓”方程;

(2)點(diǎn)P是橢圓C的“衛(wèi)星圓”上的一個(gè)動(dòng)點(diǎn),過點(diǎn)P作直線,使得,與橢圓C都只有一個(gè)交點(diǎn),且,分別交其“衛(wèi)星圓”于點(diǎn)M,N,證明:弦長(zhǎng)為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知梯形中,,,,四邊形為矩形,,平面平面

Ⅰ)求證:平面;

Ⅱ)求平面與平面所成銳二面角的余弦值;

Ⅲ)在線段上是否存在點(diǎn),使得直線與平面所成角的正弦值為,若存在,求出線段的長(zhǎng);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已如橢圓E)的離心率為,點(diǎn)E.

1)求E的方程:

2)斜率不為0的直線l經(jīng)過點(diǎn),且與E交于P,Q兩點(diǎn),試問:是否存在定點(diǎn)C,使得?若存在,求C的坐標(biāo):若不存在,請(qǐng)說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知定義在R上的函數(shù)滿足,且為偶函數(shù),若內(nèi)單調(diào)遞減,則下面結(jié)論正確的是( )

A. B.

C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案