【題目】已知 ).

(1)若, 為假, 為真,求實數(shù)的取值范圍;

(2)若的充分條件,求實數(shù)的取值范圍.

【答案】(1);(2)

【解析】試題分析:(1)先解二次不等式得出命題p中x的取值范圍,將m=5代入,得到命題q中x的范圍, 為假, 為真,即命題、中一真一假,分類討論假和真兩種情況,求出x的取值范圍;(2) 的充分條件即命題中x的取值范圍構(gòu)成的集合P是命題中x的取值范圍構(gòu)成的集合Q的子集,根據(jù)集合間的關(guān)系列出不等式,求出m的取值范圍.

試題解析:

解不等式,得

(1),∴命題 ,

又命題、中一真一假,

①若假,則解得;

②若真,則解得

綜上,實數(shù)的取值范圍是

(2)令, ,

的充分條件,

,

解得

,即實數(shù)的取值范圍是

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在一次運動會中甲、乙兩名射擊運動員決賽中各射擊十次的成績(環(huán))如下:

(1)用莖葉圖表示甲、乙兩個人的成績;

(2)根據(jù)莖葉圖分析甲、乙兩人的成績;

(3)計算兩個樣本的平均數(shù)和標(biāo)準(zhǔn)差,并根據(jù)計算結(jié)果估計哪位運動員的成績比較穩(wěn)定.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,橢圓E的左右頂點分別為AB,左右焦點分別為、,,直線交橢圓于C、D兩點,與線段及橢圓短軸分別交于兩點(不重合),.

(Ⅰ)求橢圓E的離心率;

(Ⅱ)若,設(shè)直線的斜率分別為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修44:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,已知直線l1 ),拋物線C t為參數(shù)).以原點為極點, 軸的非負(fù)半軸為極軸建立極坐標(biāo)系.

(Ⅰ)求直線l1 和拋物線C的極坐標(biāo)方程;

(Ⅱ)若直線l1 和拋物線C相交于點A(異于原點O),過原點作與l1垂直的直線l2,l2和拋物線C相交于點B(異于原點O),求△OAB的面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)關(guān)于的一元二次方程

(1)若 , 四個數(shù)中任取的一個數(shù), 是從, , 三個數(shù)中任取的一個數(shù),求上述方程有實根的概率;

(2)若是從區(qū)間上任取的一個數(shù), 是從區(qū)間上任取的一個數(shù),求上述方程有實根的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=2x﹣ ,且f( )=3.
(1)求實數(shù)a的值;
(2)判斷函數(shù)f(x)在(1,+∞)上的單調(diào)性,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)生每次投籃的命中概率都為.現(xiàn)采用隨機模擬的方法求事件的概率:先由計算器產(chǎn)生0到9之間的整數(shù)值隨機數(shù),制定1、2、3、4表示命中,5、6、7、8、9、0表示不命中;再以每3個隨機數(shù)為一組,代表三次投籃的結(jié)果.經(jīng)隨機模擬產(chǎn)生如下20組隨機數(shù):989 537 113 730 488 556 027 393 257 431 683 569 458 812 932 271 925 191 966 907,據(jù)此統(tǒng)計,該學(xué)生三次投籃中恰有一次命中的概率約為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】本題滿分15如圖,在四棱錐,平面PAD平面ABCD, ,E是BD的中點

求證:EC//平面APD;

求BP與平面ABCD所成角的正切值;

求二面角正弦值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于函數(shù)),

(1)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;

(2)若在區(qū)間內(nèi)有且只有一個極值點,試求的取值范圍;

查看答案和解析>>

同步練習(xí)冊答案