【題目】(本小題滿(mǎn)分12)已知橢圓:的焦距為,離心率為,其右焦點(diǎn)為,過(guò)點(diǎn)作直線(xiàn)交橢圓于另一點(diǎn)

1)若,外接圓的方程;

2)若過(guò)點(diǎn)的直線(xiàn)與橢圓 相交于兩點(diǎn)、,設(shè)上一點(diǎn),且滿(mǎn)足為坐標(biāo)原點(diǎn)),當(dāng)時(shí),求實(shí)數(shù)的取值范圍.

【答案】I

II,或

【解析】

試題分析:(1)設(shè)橢圓的方程,用待定系數(shù)法求出的值;(2)解決直線(xiàn)和橢圓的綜合問(wèn)題時(shí)注意:第一步:根據(jù)題意設(shè)直線(xiàn)方程,有的題設(shè)條件已知點(diǎn),而斜率未知;有的題設(shè)條件已知斜率,點(diǎn)不定,可由點(diǎn)斜式設(shè)直線(xiàn)方程.第二步:聯(lián)立方程:把所設(shè)直線(xiàn)方程與橢圓的方程聯(lián)立,消去一個(gè)元,得到一個(gè)一元二次方程.第三步:求解判別式:計(jì)算一元二次方程根.第四步:寫(xiě)出根與系數(shù)的關(guān)系.第五步:根據(jù)題設(shè)條件求解問(wèn)題中結(jié)論.

試題解析:解:(1)由題意知:,,又,

解得: 橢圓的方程為:2

可得:,設(shè),則,,

,,即

,或

,或4

當(dāng)的坐標(biāo)為時(shí), 外接圓是以為圓心,為半徑的圓,即5

當(dāng)的坐標(biāo)為時(shí),,,所以為直角三角形,其外接圓是以線(xiàn)段為直徑的圓,圓心坐標(biāo)為,半徑為

外接圓的方程為

綜上可知:外接圓方程是,或7

2)由題意可知直線(xiàn)的斜率存在.

設(shè),,,Z|X|X|K]

得:

得:9

,

,結(jié)合()得: 11

,

從而

點(diǎn)在橢圓上,,整理得:

,,或13

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,已知ABaBCb(a>b),在AB,ADCB,CD上,分別截取AEAHCFCGx(x>0),設(shè)四邊形EFGH的面積為y.

(1)寫(xiě)出四邊形EFGH的面積yx之間的函數(shù)關(guān)系;

(2)求當(dāng)x為何值時(shí)y取得最大值,最大值是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,已知直線(xiàn)為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線(xiàn)的極坐標(biāo)方程為.

(1)求曲線(xiàn)的直角坐標(biāo)方程;

(2)設(shè)點(diǎn)的直角坐標(biāo)為,直線(xiàn)與曲線(xiàn)的交點(diǎn)為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若實(shí)數(shù)滿(mǎn)足不等式組,則的最大值為__

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖幾何體,四邊形為菱形,,,,、都垂直于面,的中點(diǎn),的中點(diǎn)

(1)求證為等腰直角三角形;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系,曲線(xiàn)的參數(shù)方程為 (為參數(shù)),在以原點(diǎn)為極點(diǎn), 軸正半軸為極軸的極坐標(biāo)系中,直線(xiàn)的極坐標(biāo)方程為.

(1)的普通方程和直線(xiàn)的傾斜角;

(2)設(shè)點(diǎn)交于兩點(diǎn),求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)為定義域R上的奇函數(shù),且在R上是單調(diào)遞增函數(shù),函數(shù),數(shù)列為等差數(shù)列,且公差不為0,若,則( )

A. 45B. 15C. 10D. 0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某超市隨機(jī)選取位顧客,記錄了他們購(gòu)買(mǎi)甲、乙、丙、丁四種商品的情況,整理成如下統(tǒng)計(jì)表,其中“√”表示購(gòu)買(mǎi),“×”表示未購(gòu)買(mǎi).

×

×

×

×

×

×

85

×

×

×

×

×

×

Ⅰ)估計(jì)顧客同時(shí)購(gòu)買(mǎi)乙和丙的概率;

Ⅱ)估計(jì)顧客在甲、乙、丙、丁中同時(shí)購(gòu)買(mǎi)中商品的概率;

Ⅲ)如果顧客購(gòu)買(mǎi)了甲,則該顧客同時(shí)購(gòu)買(mǎi)乙、丙、丁中那種商品的可能性最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知三棱錐的底面是等邊三角形,點(diǎn)在平面上的射影在內(nèi)(不包括邊界),.,與底面所成角為,;二面角,的平面角為,則,,,之間的大小關(guān)系等確定的是()

A. B.

C. 是最小角,是最大角D. 只能確定,

查看答案和解析>>

同步練習(xí)冊(cè)答案