【題目】若實數滿足不等式組,則的最大值為__.
【答案】
【解析】作出不等式組對應的平面區(qū)域如圖:
由,解得,即B(6,﹣1),
由,解,即C(﹣2,﹣1),
當x≥0時,z=2x+y,即y=﹣2x+z,x≥0,
當x<0時,z=﹣2x+y,即y=2x+z,x<0,
當x≥0時,平移直線y=﹣2x+z,(紅線),
當直線y=﹣2x+z經過點A(0,﹣1)時,
直線y=﹣2x+z的截距最小為z=﹣1,
當y=﹣2x+z經過點B(6,﹣1)時,
直線y=﹣2x+z的截距最大為z=11,此時﹣1≤z≤11.
當x<0時,平移直線y=2x+z,(藍線),
當直線y=2x+z經過點A(0,﹣1)時,直線y=2x+z的截距最小為z=﹣1,
當y=2x+z經過點C(﹣2,﹣1)時,
直線y=2x+z的截距最大為z=4﹣1=3,此時﹣1≤z≤3,
綜上﹣1≤z≤11,
故z=2|x|+y的取值范圍是[﹣1,11],
故z的最大值為11,
故答案為:11.
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,曲線C1的參數方程為(為參數),曲線C2的參數方程為(為參數).在以O為極點,x軸的正半軸為極軸的極坐標系中,射線l:θ=α 與C1,C2 各有一個交點.當 α=0時,這兩個交點間的距離為2,當 α=時,這兩個交點重合.
(1) 求曲線C1,C2的直角坐標方程
(2) 設當 α=時,l與C1,C2的交點分別為A1,B1,當 α=-時,l與C1,C2的交點分別為A2,B2,求四邊形A1A2B2B1的面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,多面體ABCD﹣A1B1C1D1為正方體,則下面結論正確的是( 。
A.A1B∥B1C
B.平面CB1D1⊥平面A1B1C1D1
C.平面CB1D1∥平面A1BD
D.異面直線AD與CB1所成的角為30°
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的左、右焦點分別為、,離心率,點在橢圓上.
(1)求橢圓的方程;
(2)設過點且不與坐標軸垂直的直線交橢圓于、兩點,線段的垂直平分線與軸交于點,求點的橫坐標的取值范圍;
(3)在第(2)問的條件下,求面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(本小題滿分12分)已知橢圓:的焦距為,離心率為,其右焦點為,過點作直線交橢圓于另一點.
(1)若,求外接圓的方程;
(2)若過點的直線與橢圓 相交于兩點、,設為上一點,且滿足(為坐標原點),當時,求實數的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】從某校高一年級學生中隨機抽取了20名學生,將他們的數學檢測成績(分)分成六段(滿分100分,成績均為不低于40分的整數):,,...,后,得到如圖所示的頻率分布直方圖.
(Ⅰ)求圖中實數的值;
(Ⅱ)若該校高一年級共有學生600名,試根據以上數據,估計該校高一年級數學檢測成績不低于80分的人數.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com