精英家教網 > 高中數學 > 題目詳情

【題目】,分別為內角所對的邊,且滿足,

(I)求C的大;

(II)現給出三個條件:①;②;③.試從中選擇兩個可以確定的條件,寫出你的選擇并以此為依據求的面積S.(只寫出一種情況即可)

【答案】(Ⅰ)(Ⅱ)詳見解析

【解析】

(Ⅰ)由兩角和的正弦函數公式化簡已知等式可得,結合角C范圍可得C值.(Ⅱ)方案一:選條件,由余弦定理可求b,a的值,根據三角形面積公式即可計算得解;方案二:選條件,由正弦定理得,根據兩角和的正弦公式可求sinA值,根據三角形面積公式即可計算得解.若選條件,可得sinA1,這樣的三角形不存在.

解:(Ⅰ)依題意得:,

,∴,

,∴;

(Ⅱ)方案一:選條件①和③,

由余弦定理,有,

,

所以

方案二:選條件②和③,

由正弦定理,得,

,

,

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】隨著“互聯(lián)網+交通”模式的迅猛發(fā)展,“共享助力單車”在很多城市相繼出現.某“共享助力單車”運營公司為了解某地區(qū)用戶對該公司所提供的服務的滿意度,隨機調查了100名用戶,得到用戶的滿意度評分(滿分10分),現將評分分為5組,如下表:

組別

滿意度評分

[0,2)

[2,4)

[4,6)

[6,8)

[8,10]

頻數

5

10

a

32

16

頻率

0.05

b

0.37

c

0.16

(1)求表格中的a,b,c的值;

(2)估計用戶的滿意度評分的平均數;

(3)若從這100名用戶中隨機抽取25人,估計滿意度評分低于6分的人數為多少?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為了解華師一附中學生喜歡吃辣是否與性別有關,調研部(共10人)分三組對高中三個年級的學生進行調查,每個年級至少派3個人進行調查.(1)求調研部的甲、乙兩人都被派到高一年級進行調查的概率.(2)調研部對三個年級共100人進行了調查,得到如下的列聯(lián)表,請將列聯(lián)表補充完整,并判斷是否有以上的把握認為喜歡吃辣與性別有關?

喜歡吃辣

不喜歡吃辣

合計

男生

10

女生

20

30

合計

100

參考數據:

參考公式:,其中.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為了解人們對“延遲退休年齡政策”的態(tài)度,某部門從年齡在15歲到65歲的人群中隨機調查了100人,并得到如圖所示的頻率分布直方圖,在這100人中不支持“延遲退休年齡政策”的人數與年齡的統(tǒng)計結果如表所示:

(1)由頻率分布直方圖,估計這100人年齡的平均數;

(2)根據以上統(tǒng)計數據填寫下面的22列聯(lián)表,據此表,能否在犯錯誤的概率不超過5%的前提下,認為以45歲為分界點的不同人群對“延遲退休年齡政策”的態(tài)度存在差異?

45歲以下

45歲以上

總計

不支持

支持

總計

參考數據:

P(K2≥k0)

0.100

0.050

0.010

0.001

k0

2.706

3.841

6.635

10.828

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知二次函數在區(qū)間上有最大值4,最小值為0.

1)求函數的解析式;

2)設,若對任意恒成立,試求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數fx)是定義域為R上的奇函數,當x0時,fx=x2+2x

1)求fx)的解析式;

2)若不等式ft﹣2+f2t+1)>0成立,求實數t的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數

(1)若,且,求的最小值;

(2)若,且上恒成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系中,曲線過點,其參數方程為為參數,),以為極點,軸非負半軸為極軸,建立極坐標系,曲線的極坐標方程為

(1)求曲線的普通方程和曲線的直角坐標方程;

(2)求已知曲線和曲線交于兩點,且,求實數的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】若質地均勻的六面體玩具各面分別標有數字1,2,3,4,5,6.拋擲該玩具后,任何一個數字所在的面朝上的概率均相等.拋擲該玩具一次,記事件A=“向上的面標記的數字是完全平方數(即能寫出整數的平方形式的數,如9=32,9是完全平方數)

(1)甲、乙二人利用該玩具進行游戲,并規(guī)定:①甲拋擲一次,若事件A發(fā)生,則向上一面的點數的6倍為甲的得分;若事件A不發(fā)生,則甲得0分;②乙拋擲一次,將向上的一面對應的數字作為乙的得分,F甲、乙二人各拋擲該玩具一次,分別求二人得分的期望;

(2)拋擲該玩具一次,記事件B=“向上一面的點數不超過,若事件AB相互獨立,試求出所有的整數

查看答案和解析>>

同步練習冊答案