【題目】若質(zhì)地均勻的六面體玩具各面分別標(biāo)有數(shù)字1,2,3,4,5,6.拋擲該玩具后,任何一個(gè)數(shù)字所在的面朝上的概率均相等.拋擲該玩具一次,記事件A=“向上的面標(biāo)記的數(shù)字是完全平方數(shù)(即能寫出整數(shù)的平方形式的數(shù),如9=32,9是完全平方數(shù))”
(1)甲、乙二人利用該玩具進(jìn)行游戲,并規(guī)定:①甲拋擲一次,若事件A發(fā)生,則向上一面的點(diǎn)數(shù)的6倍為甲的得分;若事件A不發(fā)生,則甲得0分;②乙拋擲一次,將向上的一面對(duì)應(yīng)的數(shù)字作為乙的得分,F(xiàn)甲、乙二人各拋擲該玩具一次,分別求二人得分的期望;
(2)拋擲該玩具一次,記事件B=“向上一面的點(diǎn)數(shù)不超過(guò)”,若事件A與B相互獨(dú)立,試求出所有的整數(shù)
【答案】(1)答案見(jiàn)解析;(2)3或6.
【解析】試題分析:
(1)設(shè)甲、乙二人拋擲該玩具后,得分分別為,.由題意可得,計(jì)算相應(yīng)的分布列可得EX=5.,計(jì)算相應(yīng)的分布列可得.
(2)易知拋擲該玩具一次,基本事件總數(shù)共有6個(gè),事件包含2個(gè)基本事件(1點(diǎn),2點(diǎn)).記,分別表示事件,包含的基本事件數(shù),由題意可得=,則k=3或6,經(jīng)檢驗(yàn)可知3或6均滿足題意,的值可能為3或6.
試題解析:
(1)設(shè)甲、乙二人拋擲該玩具后,得分分別為,.
,則的分布列為
0 | 6 | 24 | |
EX=5.
,
1 | 2 | 3 | 4 | 5 | 6 | |
.
(2)易知拋擲該玩具一次,基本事件總數(shù)共有6個(gè),事件包含2個(gè)基本事件(1點(diǎn),2點(diǎn)).
記,分別表示事件,包含的基本事件數(shù),
由及古典概型,得,∴=,①
故事件包含的基本事件數(shù)必為3的倍數(shù),即k=3,6,
當(dāng)k=3時(shí),n(B)=3,,,符合①,
當(dāng)時(shí),,,,符合①,
故的值可能為3或6.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在中,分別為內(nèi)角所對(duì)的邊,且滿足,
(I)求C的大。
(II)現(xiàn)給出三個(gè)條件:①;②;③.試從中選擇兩個(gè)可以確定的條件,寫出你的選擇并以此為依據(jù)求的面積S.(只寫出一種情況即可)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),(),求
(1);
(2)令,求關(guān)于的函數(shù)關(guān)系式,及的取值范圍.
(3)求函數(shù),()的最大值和最小值;并寫出它的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓:()的左右焦點(diǎn)分別為,且關(guān)于直線的對(duì)稱點(diǎn)在直線上.
(1)求橢圓的離心率;
(2)若的長(zhǎng)軸長(zhǎng)為且斜率為的直線交橢圓于,兩點(diǎn),問(wèn)是否存在定點(diǎn),使得,的斜率之和為定值?若存在,求出所有滿足條件的點(diǎn)坐標(biāo);若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】從某保險(xiǎn)公司的推銷員中隨機(jī)抽取50名,統(tǒng)計(jì)這些推銷員某月的月銷售額(單位:千元),由統(tǒng)計(jì)結(jié)果得如圖頻數(shù)分別表:
月銷售額 分組 | [12.25,14.75) | [14.75,17.25) | [17.25,19.75) | [19.75,22.25) | [22.25,24.75) |
頻數(shù) | 4 | 10 | 24 | 8 | 4 |
(1)作出這些數(shù)據(jù)的頻率分布直方圖;
(2)估計(jì)這些推銷員的月銷售額的平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)作代表);
(3)根據(jù)以上抽樣調(diào)查數(shù)據(jù),公司將推銷員的月銷售指標(biāo)確定為17.875千元,試判斷是否有60%的職工能夠完成該銷售指標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知菱形,在軸上且, (,).
(Ⅰ)求點(diǎn)軌跡的方程;
(Ⅱ)延長(zhǎng)交軌跡于點(diǎn),軌跡在點(diǎn)處的切線與直線交于點(diǎn),試判斷以為圓心,線段為半徑的圓與直線的位置關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在棱長(zhǎng)為1正方體中,點(diǎn),分別為邊,的中點(diǎn),將沿所在的直線進(jìn)行翻折,將沿所在直線進(jìn)行翻折,在翻折的過(guò)程中,下列說(shuō)法錯(cuò)誤的是( )
A. 無(wú)論旋轉(zhuǎn)到什么位置,、兩點(diǎn)都不可能重合
B. 存在某個(gè)位置,使得直線與直線所成的角為
C. 存在某個(gè)位置,使得直線與直線所成的角為
D. 存在某個(gè)位置,使得直線與直線所成的角為
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在如圖(1)所示的四邊形中,,,,.將沿折起,使二面角為直二面角(如圖(2)),為的中點(diǎn).
(1)求證:平面;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司有價(jià)值10萬(wàn)元的一條流水線,要提高該流水線的生產(chǎn)能力,就要對(duì)其進(jìn)行技術(shù)改造,改造就需要投入,相應(yīng)就要提高產(chǎn)品附加值,假設(shè)附加值萬(wàn)元與技術(shù)改造投入萬(wàn)元之間的關(guān)系滿足:① 與和的乘積成正比;② 當(dāng)時(shí),;③,其中為常數(shù),且.
(1)設(shè),求出的表達(dá)式,并求出的定義域;
(2)求出附加值的最大值,并求出此時(shí)的技術(shù)改造投入的的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com