【題目】中,角, 的對邊分別為, , .已知

(1)求角的大小;

2)若, ,的值

【答案】(1)B.(2)

【解析】試題分析:

(1)邊化角,利用兩角和差正余弦公式可得,則

(2)利用正弦定理結合同角三角函數(shù)基本關系求得,然后結合題意可得.

試題解析:

(1)由已知得2acosBccosBbcosC,由正弦定理得,

2sinAcosBsinCcosBsinBcosCsin(BC),

BCA,所以2sinAcosBsinA,又A(0,),sinA0,所以cosB,

B(0,),所以B

(2)由正弦定理得,得sinA,

ab,所以A為銳角,則cosA

,

ABC,得sinCsin(AB) sin(AB)

sinAcosBcosAsinB

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知關于x的二次方程x2+2mx+2m+1=0.
(1)若方程有兩個正根,求m的取值范圍.
(2)若方程有兩根,其中一根在區(qū)間(﹣1,0)內,另一根在區(qū)間(1,3)內,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】支籃球隊進行單循環(huán)比賽(任兩支球隊恰進行一場比賽),任兩支球隊之間勝率都是.單循環(huán)比賽結束,以獲勝的場次數(shù)作為該隊的成績,成績按從大到小排名次順序,成績相同則名次相同.有下列四個命題:

:恰有四支球隊并列第一名為不可能事件; :有可能出現(xiàn)恰有兩支球隊并列第一名;

:每支球隊都既有勝又有敗的概率為; :五支球隊成績并列第一名的概率為.

其中真命題是

A. ,, B. ,, C. .. D. ..

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知橢圓過點, , 分別為橢圓的右、下頂點,且

(1)求橢圓的方程;

(2)設點在橢圓內,滿足直線 的斜率乘積為,且直線, 分別交橢圓于點

(i) 若, 關于軸對稱,求直線的斜率;

(ii) 求證: 的面積與的面積相等.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設f(x)為定義R在的偶函數(shù),當0≤x≤2時,y= ;當x>2時,y=f(x)的圖象是頂點在p(3,4),且過點A(2,3)的拋物線的一部分.
(1)求函數(shù)f(x)的解析式;
(2)在下面的直角坐標系中直接畫出函數(shù)f(x)的圖象,寫出函數(shù)f(x)的單調區(qū)間(無需證明).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在棱長為1的正方體ABCD﹣A1B1C1D1中,點E,F(xiàn)分別是棱BC,CC1的中點,P是側面BCC1B1內一點,若A1P∥平面AEF,則線段A1P長度的取值范圍是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】統(tǒng)計全國高三學生的視力情況,得到如圖所示的頻率分布直方圖,由于不慎將部分數(shù)據(jù)丟失,但知道前4組的頻率成等比數(shù)列,后6組的頻率成等差數(shù)列.

(Ⅰ)求出視力在[4.7,4.8]的頻率;

(Ⅱ)現(xiàn)從全國的高三學生中隨機地抽取4人,用表示視力在[4.3,4.7]的學生人數(shù),寫出的分布列,并求出的期望與方差.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=﹣3x2+a(6﹣a)x+c.
(1)當c=19時,解關于a的不等式f(1)>0;
(2)若關于x的不等式f(x)>0的解集是(﹣1,3),求實數(shù)a,c的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)為自然對數(shù)的底數(shù))有兩個極值點,則實數(shù)的取值范圍是( )

A. B. C. D.

查看答案和解析>>

同步練習冊答案