【題目】定義在 上的單調遞減函數 ,若 的導函數存在且滿足 ,則下列不等式成立的是( )
A.
B.
C.
D.
【答案】A
【解析】∵ 為 上的單調遞減函數,∴ ,又∵ ,
∴ >0 <0[ ]′<0,
設h(x)= ,則h(x)= 為(0,+∞)上的單調遞減函數,
∵ >x>0,f′(x)<0,∴f(x)<0.
∵h(x)= 為 上的單調遞減函數,
∴ > >02f(3)﹣3f(2)>02f(3)>3f(2),故A正確;由2f(3)>3f(2)>3f(4),可排除C;同理可判斷3f(4)>4f(3),排除B;1f(2)>2f(1),排除D;所以答案是:A.
【考點精析】認真審題,首先需要了解利用導數研究函數的單調性(一般的,函數的單調性與其導數的正負有如下關系: 在某個區(qū)間內,(1)如果,那么函數在這個區(qū)間單調遞增;(2)如果,那么函數在這個區(qū)間單調遞減).
科目:高中數學 來源: 題型:
【題目】某學校為了了解該校學生對于某項運動的愛好是否與性別有關,通過隨機抽查110名學生,得到如下2×2的列聯表:
喜歡該項運動 | 不喜歡該項運動 | 總計 | |
男 | 40 | 20 | 60 |
女 | 20 | 30 | 50 |
總計 | 60 | 50 | 110 |
由公式K2= ,算得K2≈7.61
附表:
p(K2≥k0) | 0.025 | 0.01 | 0.005 |
k0 | 5.024 | 6.635 | 7.879 |
參照附表,以下結論正確是( )
A.有99.5%以上的把握認為“愛好該項運動與性別有關”
B.有99.5%以上的把握認為“愛好該項運動與性別無關”
C.有99%以上的把握認為“愛好該項運動與性別有關”
D.有99%以上的把握認為“愛好該項運動與性別無關”
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】<中華人民共和國個人所得稅法>規(guī)定,公民全月工資、薪金所得不超過3500元的部分不必納稅,超過3500元的部分為全月應納稅所得額,此項稅款按下表分段累計計算:
(1)若某人一月份應繳納此項稅款為280元,那么他當月的工資、薪金所得是多少?
(2)假設某人一個月的工資、薪金所得是元(0<10000),試將其當月應繳納此項稅款元表示成關于的函數.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)(sinx+cosx)2+2cos2x﹣2
(1)求函數f(x)的最小正周期T;
(2)求f(x)的最大值,并指出取得最大值時x取值集合;
(3)當x∈[ , ]時,求函數f(x)的值域.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數.
(1)解不等式;
(2)若函數在區(qū)間上存在零點,求實數的取值范圍;
(3)若函數,其中為奇函數, 為偶函數,若不等式對任意恒成立,求實數的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某校從6名學生會干部(其中男生4人,女生2人)中選3人參加青年聯合會志愿者。
(1)設所選3人中女生人數為 ,求 的分布列及數學期望;
(2)在男生甲被選中的情況下,求女生乙也被選中的概率。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數f(x)=lnx﹣ax,a∈R.
(1)當x=1時,函數f(x)取得極值,求a的值;
(2)當0<a< 時,求函數f(x)在區(qū)間[1,2]上的最大值;
(3)當a=﹣1時,關于x的方程2mf(x)=x2(m>0)有唯一實數解,求實數m的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com