【題目】已知函數(shù)f(x)(sinx+cosx)2+2cos2x﹣2
(1)求函數(shù)f(x)的最小正周期T;
(2)求f(x)的最大值,并指出取得最大值時(shí)x取值集合;
(3)當(dāng)x∈[ , ]時(shí),求函數(shù)f(x)的值域.
【答案】
(1)解:函數(shù)f(x)=(sinx+cosx)2+2cos2x﹣2
化簡可得:f(x)=1+2sinxcosx+1+cos2x﹣2=sin2x+cos2x= sin(2x+ )
函數(shù)f(x)的最小正周期T=
(2)解:令2x+ = ,k∈Z,
得:x= .
∴當(dāng)x= 時(shí),f(x)取得最大值為 .
∴取得最大值時(shí)x取值集合為{x|x= ,k∈Z}
(3)解:當(dāng)x∈[ , ]時(shí),
可得:2x+ ∈[ , ],
∴﹣1≤sin(2x+ )≤
∴ ≤ sin(2x+ )≤1.
故得當(dāng)x∈[ , ]時(shí),函數(shù)f(x)的值域?yàn)閇 ,1]
【解析】(1)利用二倍角和輔助角公式化簡為y=Asin(ωx+φ)的形式,再利用周期公式求函數(shù)的最小正周期;(2)根據(jù)三角函數(shù)的性質(zhì)即可得f(x)的最大值,以及取得最大值時(shí)x取值集合;(3)當(dāng)x∈[ , ]時(shí),求出內(nèi)層函數(shù)的取值范圍,結(jié)合三角函數(shù)的圖象和性質(zhì),求出f(x)的最大值和最小值,即得到f(x)的值域.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將參加夏令營的600名學(xué)生編號為:001,002,…,600,采用系統(tǒng)抽樣的方法抽取一個(gè)容量為50的樣本,且隨機(jī)抽得的編號為003.這600名學(xué)生分住在3個(gè)營區(qū),從001到300住在第1營區(qū),從301到495住在第2營區(qū),從496到600住在第3營區(qū),則3個(gè)營區(qū)被抽中的人數(shù)依次為( )
A. 26,16,8 B. 25,16,9
C. 25,17,8 D. 24,17,9
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)()是偶函數(shù).
(1)求的值;
(2)若函數(shù)沒有零點(diǎn),求的取值范圍;
(3)若函數(shù), 的最小值為0,求實(shí)數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|x+a|.
(1)若a=2,解關(guān)于x的不等式f(x)+f(x﹣3)≥5;
(2)若關(guān)于x的不等式f(x)﹣f(x+2)+4≥|1﹣3m|恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在中, 分別為的中點(diǎn),點(diǎn)為線段上的一點(diǎn),將沿折起到的位置,使,如圖2.
(1)求證: ;
(2)線段上是否存在點(diǎn),使平面?說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在 上的單調(diào)遞減函數(shù) ,若 的導(dǎo)函數(shù)存在且滿足 ,則下列不等式成立的是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某廠商為了解用戶對其產(chǎn)品是否滿意,在使用產(chǎn)品的用戶中隨機(jī)調(diào)查了80人,結(jié)果如下表:
(1)根據(jù)上述,現(xiàn)用分層抽樣的方法抽取對產(chǎn)品滿意的用戶5人,在這5人中任選2人,求被選中的恰好是男、女用戶各1人的概率;
(2)有多大把握認(rèn)為用戶對該產(chǎn)品是否滿意與用戶性別有關(guān)?請說明理由.
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
注:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知三棱柱的所有棱長都相等,且側(cè)棱垂直于底面,由沿棱柱側(cè)面經(jīng)過棱到點(diǎn)的最短路線長為,設(shè)這條最短路線與的交點(diǎn)為.
(1)求三棱柱的體積;
(2)證明:平面平面.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】銳角△ABC中,角A、B、C所對的邊分別為a、b、c,且tanA﹣tanB= (1+tanAtanB). (Ⅰ)若c2=a2+b2﹣ab,求角A、B、C的大小;
(Ⅱ)已知向量 =(sinA,cosA), =(cosB,sinB),求|3 ﹣2 |的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com