【題目】已知函數(shù),其中是自然常數(shù).

(1)判斷函數(shù)內(nèi)零點(diǎn)的個(gè)數(shù),并說(shuō)明理由;

(2),,使得不等式成立,試求實(shí)數(shù)的取值范圍.

【答案】(1) 存在1個(gè)零點(diǎn);理由見(jiàn)解析.

(2) .

【解析】分析:(1)內(nèi)零點(diǎn)的個(gè)數(shù)1,求得的導(dǎo)數(shù),判斷符號(hào),可得單調(diào)性,再由函數(shù)零點(diǎn)存在定理,即可得到結(jié)論;
(2)由題意可得,即 ,分別求得上的單調(diào)性,可得最值,解的不等式,即可得到所求范圍.

詳解:

(1)函數(shù)上的零點(diǎn)的個(gè)數(shù)為1,理由如下:

因?yàn)?/span>,所以,

因?yàn)?/span>,所以,所以函數(shù)上單調(diào)遞增.

因?yàn)?/span>,

根據(jù)函數(shù)零點(diǎn)存在性定理得函數(shù)上存在1個(gè)零點(diǎn).

(2)因?yàn)椴坏仁?/span>等價(jià)于,

所以,,使得不等式成立,等價(jià)于

,即,

當(dāng)時(shí),,故在區(qū)間上單調(diào)遞增,

所以當(dāng)時(shí),取得最小值,又,

當(dāng)時(shí),,,所以

故函數(shù)在區(qū)間上單調(diào)遞減.

因此,當(dāng)時(shí),取得最大值,所以,所以,

所以實(shí)數(shù)的取值范圍為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】本小題滿分12分某校甲、乙兩個(gè)班級(jí)各有5名編號(hào)為1,2,3,4,5的學(xué)生進(jìn)行投籃訓(xùn)練,每人投10次,投中的次數(shù)統(tǒng)計(jì)如下表:

學(xué)生

1號(hào)

2號(hào)

3號(hào)

4號(hào)

5號(hào)

甲班

6

5

7

9

8

乙班

4

8

9

7

7

(1)從統(tǒng)計(jì)數(shù)據(jù)看,甲、乙兩個(gè)班哪個(gè)班成績(jī)更穩(wěn)定用數(shù)字特征說(shuō)明

(2)在本次訓(xùn)練中,從兩班中分別任選一個(gè)同學(xué),比較兩人的投中次數(shù),求甲班同學(xué)投中次數(shù)高于乙班同學(xué)投中次數(shù)的概率

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面為正方形, , .

(Ⅰ)若的中點(diǎn),求證: 平面;

(Ⅱ)若, ,求三棱錐的高.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,,DAE的中點(diǎn),C是線段BE上的一點(diǎn),且,,將沿AB折起使得二面角是直二面角.

(l)求證:CD平面PAB;

(2)求直線PE與平面PCD所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的焦點(diǎn)在軸上,中心在坐標(biāo)原點(diǎn),拋物線的焦點(diǎn)在軸上,頂點(diǎn)在坐標(biāo)原點(diǎn),在、上各取兩個(gè)點(diǎn),將其坐標(biāo)記錄于表格中:

(1)求的標(biāo)準(zhǔn)方程;

(2)已知定點(diǎn),為拋物線上的一點(diǎn),其橫坐標(biāo)為,拋物線在點(diǎn)處的切線交橢圓兩點(diǎn),求面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知ab為正實(shí)數(shù).

(1)求證:ab;

(2)利用(1)的結(jié)論求函數(shù)y(0<x<1)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】方程ay=b2x2+c中的a,b,c∈{﹣3,﹣2,0,1,2,3},且a,b,c互不相同,在所有這些方程所表示的曲線中,不同的拋物線共有( )
A.60條
B.62條
C.71條
D.80條

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下面幾種推理過(guò)程是演繹推理的是( )

A. 在數(shù)列|中,由此歸納出的通項(xiàng)公式

B. 由平面三角形的性質(zhì),推測(cè)空間四面體性質(zhì)

C. 某校高二共有10個(gè)班,1班有51人,2班有53人,3班有52人,由此推測(cè)各班都超過(guò)50人

D. 兩條直線平行,同旁內(nèi)角互補(bǔ),如果是兩條平行直線的同旁內(nèi)角,則

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AD與BC是四面體ABCD中互相垂直的棱,BC=2,若AD=2c,且AB+BD=AC+CD=2a,其中a、c為常數(shù),則四面體ABCD的體積的最大值是

查看答案和解析>>

同步練習(xí)冊(cè)答案