如下圖所示,觀察四個幾何體,其中判斷正確的是(  )
A.①是棱臺B.②是圓臺C.③是棱錐D.④不是棱柱
C

試題分析:利用幾何體的結(jié)構(gòu)特征進行分析判斷,能夠求出結(jié)果解:圖①不是由棱錐截來的,所以①不是棱臺;圖②上、下兩個面不平行,所以②不是圓臺;圖③是棱錐.圖④前、后兩個面平行,其他面是平行四邊形,且每相鄰兩個四邊形的公共邊平行,所以④是棱柱.故選C
點評:本題考查幾何體的結(jié)構(gòu)特征,解題時要認真審題,注意熟練掌握基本概念.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在四棱錐P-ABCD中,PA丄平面ABCD,,AD=AB=1,AC和BD交于O點.
(I)求證:平面PBD丄平面PAC.
(II)當點A在平面PBD內(nèi)的射影G恰好是ΔPBD的重心時,求二面角B-PD-A的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在四棱錐ABCD-PGFE中,底面ABCD是直角梯形,側(cè)棱垂直于底面,AB//DC,∠ABC=45o,DC=1,AB=2,PA=1.

(Ⅰ)求PD與BC所成角的大;
(Ⅱ)求證:BC⊥平面PAC;
(Ⅲ)求二面角A-PC-D的大。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

在直角梯形ABCD中,AB=2DC=2AD=2,∠DAB=∠ADC =90°,將△DBC沿BD向上折起,使面ABD垂直于面BDC,則C-DAB三棱錐的外接球的體積為­________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知直角梯形中,,是等邊三角形,平面⊥平面.

(1)求二面角的余弦值;
(2)求到平面的距離.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,已知平面,平面,△為等邊三角形,,的中點.

(1)求證:平面
(2)求證:平面平面;
(3)求直線和平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知正方體, 是底對角線的交點.

求證:(Ⅰ)∥面
(Ⅱ)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

將一個等腰梯形繞著它的較長的底邊所在的直線旋轉(zhuǎn)一周,所得的幾何體包括
A.一個圓臺、兩個圓錐B.兩個圓臺、一個圓柱
C.兩個圓臺、一個圓錐D.一個圓柱、兩個圓錐

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知,如圖所示的正方體的棱長為4,E、F分別為A1D1、AA1的中點,過C1、E、F的截面的周長為___________________.

查看答案和解析>>

同步練習冊答案