【題目】家政服務公司根據(jù)用戶滿意程度將本公司家政服務員分為兩類,其中A類服務員12名,B類服務員x名.

(Ⅰ)若采用分層抽樣的方法隨機抽取20名家政服務員參加技術培訓,抽取到B類服務員的人數(shù)是16, 求x的值;

(Ⅱ)某客戶來公司聘請2名家政服務員,但是由于公司人員安排已經(jīng)接近飽和,只有3名A類家政服務員和2名B類家政服務員可供選擇,求該客戶最終聘請的家政服務員中既有A類又有B類的概率.

【答案】(Ⅰ) x=48(Ⅱ) .

【解析】試題分析:(Ⅰ)由分層抽樣的性質(zhì)列出方程,求出
(Ⅱ)基本事件總數(shù) 該客戶最終聘請的家政服務員中既有A類又有B類包含的基本事件個數(shù) 由此能求出該客戶最終聘請的家政服務員中既有A類又有B類的概率.

試題解析:(Ⅰ)20-16=4,由x=16,可得x=48

(Ⅱ)設3名A類家政服務員的編號為a,b,c,2名B類家政服務員的編號為1,2,

則所有可能情況有:(a,b),(a,c),(a,1),(a,2),(b,c),(b,1),(b,2),(c,1),(c,2),(1,2)共10種選擇.

該客戶最終聘請的家政服務員中既有A類又有B類的情況有:

(a,1),(a,2),(b,1),(b,2),(c,1),(c,2)共6種選擇,

∴該客戶最終聘請的家政服務員中既有A類又有B類的概率為

P=.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】(2017·合肥市質(zhì)檢)已知點F為橢圓E (a>b>0)的左焦點,且兩焦點與短軸的一個頂點構成一個等邊三角形,直線與橢圓E有且僅有一個交點M.

(1)求橢圓E的方程;

(2)設直線y軸交于P,過點P的直線l與橢圓E交于不同的兩點A,B,若λ|PM|2|PA|·|PB|,求實數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在直三棱柱中, , , , 分別是的中點.

(1)求證: 平面

(2)求平面與平面所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=|3x-1|-2|x|+2.

(Ⅰ)解不等式:f(x)<10;

(Ⅱ)若對任意的實數(shù)x,f(x)-|x|≤a恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,菱形與等邊所在的平面相互垂直, ,點EF分別為PCAB的中點

(Ⅰ)求證:EF∥平面PAD

(Ⅱ)證明: ;

(Ⅲ)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)求函數(shù)f(x)的最小值;

(2)已知m∈R,p:關于x的不等式f(x)≥m2+2m-2對任意x∈R恒成立,q:函數(shù)y=(m2-1)x是增函數(shù),若p正確,q錯誤,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知定義在R的函數(shù)是偶函數(shù),且滿足上的解析式為,過點作斜率為k的直線l,若直線l與函數(shù)的圖象至少有4個公共點,則實數(shù)k的取值范圍是

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知曲線.

(1)求曲線在點P(2,4)處的切線方程;

(2)求曲線過點P(2,4)的切線方程;

(3)求斜率為1的曲線的切線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某種產(chǎn)品按質(zhì)量標準分為,,,,五個等級.現(xiàn)從一批該產(chǎn)品隨機抽取20個,對其等級進行統(tǒng)計分析,得到頻率分布表如下:

等級

頻率

1在抽取的20個產(chǎn)品中,等級為5的恰有2個,求,;

21的條件下,從等級為35的所有產(chǎn)品中,任意抽取2個,求抽取的2個產(chǎn)品等級恰好相同的概率.

查看答案和解析>>

同步練習冊答案