【題目】東北三省四市教研聯(lián)合體2018屆高三第二次模擬考試中國有個(gè)名句運(yùn)籌帷幄之中,決勝千里之外.”其中的取意是指《孫子算經(jīng)》中記載的算籌.古代是用算籌來進(jìn)行計(jì)算.算籌是將幾寸長的小竹棍擺在下面上進(jìn)行運(yùn)算.算籌的擺放形式有縱橫兩種形式(如下圖所示).表示一個(gè)多位數(shù)時(shí),像阿拉伯計(jì)數(shù)一樣,把各個(gè)數(shù)位的數(shù)碼從左到右排列.但各位數(shù)碼的籌式要縱橫相間,個(gè)位,百位,萬位數(shù)用縱式表示,十位,千位,十萬位數(shù)用橫式表示.依此類推.例如3266用算籌表示就是,8771用算籌可表示為

中國古代的算籌數(shù)碼

A. B.

C. D.

【答案】C

【解析】由題意,根據(jù)古代用算籌來記數(shù)的方法,個(gè)位,百位,萬位上的數(shù)用縱式表示,十位,千位,十萬位上的數(shù)用橫式來表示,比照算籌的擺放形式,易知正確答案為C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某服裝批發(fā)市場(chǎng)1-5月份的服裝銷售量與利潤的統(tǒng)計(jì)數(shù)據(jù)如下表:

月份

1

2

3

4

5

銷售量 (萬件)

3

6

4

7

8

利潤 (萬元)

19

34

26

41

46

1)從這五個(gè)月的利潤中任選2個(gè),分別記為, 求事件, 均不小于30”的概率;

2)已知銷售量與利潤大致滿足線性相關(guān)關(guān)系,請(qǐng)根據(jù)前4個(gè)月的數(shù)據(jù),求出關(guān)于的線性回歸方程;

3)若由線性回歸方程得到的利潤的估計(jì)數(shù)據(jù)與真實(shí)數(shù)據(jù)的誤差不超過2萬元,則認(rèn)為得到的利潤的估計(jì)數(shù)據(jù)是理想的請(qǐng)用表格中第5個(gè)月的數(shù)據(jù)檢驗(yàn)由(2)中回歸方程所得的第5個(gè)月的利潤的估計(jì)數(shù)據(jù)是否理想參考公式:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)在橢圓上.若點(diǎn),,且.

(1)求橢圓的離心率;

(2)設(shè)橢圓的焦距為4,,是橢圓上不同的兩點(diǎn),線段的垂直平分線為直線,且直線不與軸重合.

①若點(diǎn),直線過點(diǎn),求直線的方程;

② 若直線過點(diǎn),且與軸的交點(diǎn)為,求點(diǎn)橫坐標(biāo)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)是定義在R上的奇函數(shù)

(1)求實(shí)數(shù)的值;

(2)如果對(duì)任意,不等式恒成立,求實(shí)數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若恒成立,求實(shí)數(shù)的最大值;

(2)在(1)成立的條件下,正實(shí)數(shù),滿足,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校將甲、乙等6名新招聘的老師分配到4個(gè)不同的年級(jí),每個(gè)年級(jí)至少分配1名教師,且甲、乙兩名老師必須分到同一個(gè)年級(jí),則不同的分法種數(shù)為______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】經(jīng)市場(chǎng)調(diào)查,新街口某新開業(yè)的商場(chǎng)在過去一個(gè)月內(nèi)(以30天計(jì)),顧客人數(shù)(千人)與時(shí)間(天)的函數(shù)關(guān)系近似滿足),人均消費(fèi)(元)與時(shí)間(天)的函數(shù)關(guān)系近似滿足

(1)求該商場(chǎng)的日收益(千元)與時(shí)間(天)(, )的函數(shù)關(guān)系式;

(2)求該商場(chǎng)日收益的最小值(千元).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校參加夏令營的同學(xué)有3名男同學(xué)3名女同學(xué),其所屬年級(jí)情況如下表:

高一年級(jí)

高二年級(jí)

高三三年級(jí)

男同學(xué)

女同學(xué)

現(xiàn)從這6名同學(xué)中隨機(jī)選出2人參加知識(shí)競(jìng)賽(每人被選到的可能性相同)

1)用表中字母寫出這個(gè)試驗(yàn)的樣本空間;

2)設(shè)為事件“選出的2人來自不同年級(jí)且恰有1名男同學(xué)和1名女同學(xué)”,寫出事件的樣本點(diǎn),并求事件發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知各項(xiàng)都不為零的無窮數(shù)列滿足: ;

(1)證明為等差數(shù)列,并求時(shí)數(shù)列中的最大項(xiàng):

(2)若為數(shù)列中的最小項(xiàng),求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案