【題目】在平面直角坐標(biāo)系中,圓的參數(shù)方程為是參數(shù),是大于0的常數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,圓的極坐標(biāo)方程為.

1)求圓的極坐標(biāo)方程和圓的直角坐標(biāo)方程;

2)分別記直線,與圓、圓的異于原點(diǎn)的交點(diǎn)為,,若圓與圓外切,試求實(shí)數(shù)的值及線段的長(zhǎng).

【答案】(1)圓的極坐標(biāo)方程為,的直角坐標(biāo)方程為(2),

【解析】

1)利用消去參數(shù),求得圓的普通方程,進(jìn)而轉(zhuǎn)化為極坐標(biāo)方程.利用,以及兩角差的余弦公式,將圓的極坐標(biāo)方程轉(zhuǎn)化為直角坐標(biāo)方程.

2)先求得兩個(gè)圓的圓心和半徑,利用兩圓外切,圓心距等于兩圓半徑之和列方程,解方程求得的值.分別代入的極坐標(biāo)方程,利用的幾何意義,求得線段的長(zhǎng).

1)圓是參數(shù))消去參數(shù),

得其普通方程為,

代入上式并化簡(jiǎn),

得圓的極坐標(biāo)方程為.

由圓的極坐標(biāo)方程,得.

,,代入上式,

得圓的直角坐標(biāo)方程為.

2)由(1)知圓的圓心,半徑;圓的圓心,半徑,

,

∵圓與圓外切,

,解得,

即圓的極坐標(biāo)方程為,

代入,得,

,

代入,得,得,

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè),…,1,2,10的一個(gè)排列,則滿足對(duì)任意正整數(shù)m,n,且,都有成立的不同排列的個(gè)數(shù)為(

A.512B.256C.255D.64

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn),橢圓的離心率為,是橢圓的右焦點(diǎn),直線的斜率為,為坐標(biāo)原點(diǎn). 設(shè)過(guò)點(diǎn)的動(dòng)直線相交于兩點(diǎn).

1)求的方程;

2)是否存在這樣的直線,使得的面積為,若存在,求出的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知雙曲線 C 經(jīng)過(guò)點(diǎn) (2,3),它的漸近線方程為 y = ±.橢圓 C1與雙曲線 C有相同的焦點(diǎn),橢圓 C1的短軸長(zhǎng)與雙曲線 C 的實(shí)軸長(zhǎng)相等.

1)求雙曲線 C 和橢圓 C1 的方程;

2)經(jīng)過(guò)橢圓 C1 左焦點(diǎn) F 的直線 l 與橢圓 C1 交于 A、B 兩點(diǎn),是否存在定點(diǎn) D ,使得無(wú)論 AB 怎樣運(yùn)動(dòng),都有∠ADF = BDF ?若存在,求出 D 點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)F1、F2分別為橢圓C:=1(a>b>0)的左、右焦點(diǎn),點(diǎn)A為橢圓C的左頂點(diǎn),點(diǎn)B為橢圓C的上頂點(diǎn),且|AB|=,△BF1F2為直角三角形.

(1)求橢圓C的方程;

(2)設(shè)直線y=kx+2與橢圓交于P、Q兩點(diǎn),且OP⊥OQ,求實(shí)數(shù)k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率,左、右焦點(diǎn)分別是、,且橢圓上一動(dòng)點(diǎn)的最遠(yuǎn)距離為,過(guò)的直線與橢圓交于,兩點(diǎn).

1)求橢圓的標(biāo)準(zhǔn)方程;

2)當(dāng)為直角時(shí),求直線的方程;

3)直線的斜率存在且不為0時(shí),試問(wèn)軸上是否存在一點(diǎn)使得,若存在,求出點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某產(chǎn)品自生產(chǎn)并投入市場(chǎng)以來(lái),生產(chǎn)企業(yè)為確保產(chǎn)品質(zhì)量,決定邀請(qǐng)第三方檢測(cè)機(jī)構(gòu)對(duì)產(chǎn)品進(jìn)行質(zhì)量檢測(cè),并依據(jù)質(zhì)量指標(biāo)來(lái)衡量產(chǎn)品的質(zhì)量.當(dāng)時(shí),產(chǎn)品為優(yōu)等品;當(dāng)時(shí),產(chǎn)品為一等品;當(dāng)時(shí),產(chǎn)品為二等品.第三方檢測(cè)機(jī)構(gòu)在該產(chǎn)品中隨機(jī)抽取500件,繪制了這500件產(chǎn)品的質(zhì)量指標(biāo)的條形圖.用隨機(jī)抽取的500件產(chǎn)品作為樣本,估計(jì)該企業(yè)生產(chǎn)該產(chǎn)品的質(zhì)量情況,并用頻率估計(jì)概率.

(1)從該企業(yè)生產(chǎn)的所有產(chǎn)品中隨機(jī)抽取1件,求該產(chǎn)品為優(yōu)等品的概率;

(2)現(xiàn)某人決定購(gòu)買(mǎi)80件該產(chǎn)品.已知每件成本1000元,購(gòu)買(mǎi)前,邀請(qǐng)第三方檢測(cè)機(jī)構(gòu)對(duì)要購(gòu)買(mǎi)的80件產(chǎn)品進(jìn)行抽樣檢測(cè).買(mǎi)家、企業(yè)及第三方檢測(cè)機(jī)構(gòu)就檢測(cè)方案達(dá)成以下協(xié)議:從80件產(chǎn)品中隨機(jī)抽出4件產(chǎn)品進(jìn)行檢測(cè),若檢測(cè)出3件或4件為優(yōu)等品,則按每件1600元購(gòu)買(mǎi),否則按每件1500元購(gòu)買(mǎi),每件產(chǎn)品的檢測(cè)費(fèi)用250元由企業(yè)承擔(dān).記企業(yè)的收益為元,求的分布列與數(shù)學(xué)期望;

(3)商場(chǎng)為推廣此款產(chǎn)品,現(xiàn)面向意向客戶推出“玩游戲,送大獎(jiǎng)”活動(dòng).客戶可根據(jù)拋硬幣的結(jié)果,操控機(jī)器人在方格上行進(jìn),已知硬幣出現(xiàn)正、反面的概率都是,方格圖上標(biāo)有第0格、第1格、第2格、……、第50格.機(jī)器人開(kāi)始在第0格,客戶每擲一次硬幣,機(jī)器人向前移動(dòng)一次,若擲出正面,機(jī)器人向前移動(dòng)一格(從),若擲出反面,機(jī)器人向前移動(dòng)兩格(從),直到機(jī)器人移到第49格(勝利大本營(yíng))或第50格(失敗大本營(yíng))時(shí),游戲結(jié)束,若機(jī)器人停在“勝利大本營(yíng)”,則可獲得優(yōu)惠券.設(shè)機(jī)器人移到第格的概率為,試證明是等比數(shù)列,并解釋此方案能否吸引顧客購(gòu)買(mǎi)該款產(chǎn)品.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率為,點(diǎn)上.

(1) 求橢圓的方程;

(2) 設(shè)分別是橢圓的上、下焦點(diǎn),過(guò)的直線與橢圓交于不同的兩點(diǎn),求的內(nèi)切圓的半徑的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù),其中.

(1)討論的奇偶性;

(2)時(shí),求證:的最小正周期是

(3),當(dāng)函數(shù)的圖像與的圖像有交點(diǎn)時(shí),求滿足條件的的個(gè)數(shù),說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案