【題目】如圖所示,定義域為上的函數(shù)是由一條射線及拋物線的一部分組成.利用該圖提供的信息解決下面幾個問題.

1)求的解析式;

2)若關(guān)于的方程有三個不同解,求的取值范圍;

3)若,求的取值集合.

【答案】1.;2;3.

【解析】試題分析:1)由圖象可知,當時, 為一次函數(shù);當時, 是二次函數(shù),分別用待定系數(shù)法求解析式;(2)當時, ,結(jié)合圖象可以得到當時,函數(shù)的圖象和函數(shù)的圖象有三個公共點,即方程有三個不同解;(3)分兩種情況分別解方程即可。

試題解析:

1)①當時,函數(shù)為一次函數(shù),設(shè)其解析式為,

∵點在函數(shù)圖象上,

解得

②當時,函數(shù)是二次函數(shù),設(shè)其解析式為,

∵點在函數(shù)圖象上,

解得

綜上.

21得當時, ,

。

結(jié)合圖象可得若方程有三個不同解,則。

∴實數(shù)的取值范圍.

3)當時,由

解得 ;

時,由,

整理得

解得(舍去)

綜上得滿足的取值集合是.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】本題共3個小題,第1小題滿分3分,第2小題滿分6分,第3小題滿分9.

已知數(shù)列滿足.

1)若,求的取值范圍;

2)若是公比為等比數(shù)列,的取值范圍;

3)若成等差數(shù)列,且,求正整數(shù)的最大值,以及取最大值時相應(yīng)數(shù)列的公差.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),令.

(1)當時,求函數(shù)的單調(diào)遞增區(qū)間;

(2)若關(guān)于的不等式恒成立,求整數(shù)的最小值;

(3)若,正實數(shù)滿足,證明: .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】先后拋擲兩枚骰子,設(shè)出現(xiàn)的點數(shù)之和是12,11,10的概率依次是P1,P2,P3,則(

(A)P1=P2<P3 (B)P1<P2<P3 (C)P1<P2=P3 (D)P3=P2<P1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知集合,其中,由中的元素構(gòu)成兩個相應(yīng)的集合:

,

其中是有序數(shù)對,集合中的元素個數(shù)分別為

若對于任意的,總有,則稱集合具有性質(zhì)

)檢驗集合是否具有性質(zhì)并對其中具有性質(zhì)的集合,寫出相應(yīng)的集合

)對任何具有性質(zhì)的集合,證明

)判斷的大小關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖為半圓的直徑,點是半圓弧上的兩點, .曲線經(jīng)過點,且曲線上任意點滿足為定值.

(Ⅰ)求曲線的方程;

(Ⅱ)設(shè)過點的直線與曲線交于不同的兩點,求面積最大時的直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,在四棱錐中, ,底面為梯形, 平面.

(1)證明:平面平面;

(2)當異面直線所成角為時,求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)點是棱長為2的正方體的棱的中點,點在面所在的平面內(nèi),若平面分別與平面和平面所成的銳二面角相等,則點到點的最短距離是( )

A. B. C. 1 D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某小區(qū)為了提高小區(qū)內(nèi)人員的讀書興趣,特舉辦讀書活動,準備進一定量的書籍豐富小區(qū)圖書站,由于不同年齡段需要看不同類型的書籍,為了合理配備資源,現(xiàn)對小區(qū)看書人員進行年齡調(diào)查,隨機抽取了一天40名讀書者進行調(diào)查,將他們的年齡分成6段: , , , , 后得到如圖所示的頻率分布直方圖,問:

(1)在40名讀書者中年齡分布在的人數(shù);

(2)估計40名讀書者年齡的平均數(shù)和中位數(shù);

(3)若從年齡在的讀書者中任取2名,求這兩名讀書者年齡在的人數(shù)的分布列和數(shù)學期望.

查看答案和解析>>

同步練習冊答案