【題目】如圖所示,定義域為上的函數(shù)是由一條射線及拋物線的一部分組成.利用該圖提供的信息解決下面幾個問題.
(1)求的解析式;
(2)若關(guān)于的方程有三個不同解,求的取值范圍;
(3)若,求的取值集合.
【答案】(1).;(2);(3).
【解析】試題分析:(1)由圖象可知,當時, 為一次函數(shù);當時, 是二次函數(shù),分別用待定系數(shù)法求解析式;(2)當時, ,結(jié)合圖象可以得到當時,函數(shù)的圖象和函數(shù)的圖象有三個公共點,即方程有三個不同解;(3)分和兩種情況分別解方程即可。
試題解析:
(1)①當時,函數(shù)為一次函數(shù),設(shè)其解析式為,
∵點和在函數(shù)圖象上,
∴
解得
②當時,函數(shù)是二次函數(shù),設(shè)其解析式為,
∵點在函數(shù)圖象上,
∴
解得
綜上.
(2)由(1)得當時, ,
∴。
結(jié)合圖象可得若方程有三個不同解,則。
∴實數(shù)的取值范圍.
(3)當時,由得
解得 ;
當時,由得,
整理得
解得或(舍去)
綜上得滿足的的取值集合是.
科目:高中數(shù)學 來源: 題型:
【題目】本題共3個小題,第1小題滿分3分,第2小題滿分6分,第3小題滿分9分.
已知數(shù)列滿足.
(1)若,求的取值范圍;
(2)若是公比為等比數(shù)列,,求的取值范圍;
(3)若成等差數(shù)列,且,求正整數(shù)的最大值,以及取最大值時相應(yīng)數(shù)列的公差.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),令.
(1)當時,求函數(shù)的單調(diào)遞增區(qū)間;
(2)若關(guān)于的不等式恒成立,求整數(shù)的最小值;
(3)若,正實數(shù)滿足,證明: .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】先后拋擲兩枚骰子,設(shè)出現(xiàn)的點數(shù)之和是12,11,10的概率依次是P1,P2,P3,則( )
(A)P1=P2<P3 (B)P1<P2<P3 (C)P1<P2=P3 (D)P3=P2<P1
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知集合,其中,由中的元素構(gòu)成兩個相應(yīng)的集合:
, .
其中是有序數(shù)對,集合和中的元素個數(shù)分別為和.
若對于任意的,總有,則稱集合具有性質(zhì).
(Ⅰ)檢驗集合與是否具有性質(zhì)并對其中具有性質(zhì)的集合,寫出相應(yīng)的集合和.
(Ⅱ)對任何具有性質(zhì)的集合,證明.
(Ⅲ)判斷和的大小關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖為半圓的直徑,點是半圓弧上的兩點, , .曲線經(jīng)過點,且曲線上任意點滿足: 為定值.
(Ⅰ)求曲線的方程;
(Ⅱ)設(shè)過點的直線與曲線交于不同的兩點,求面積最大時的直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)點是棱長為2的正方體的棱的中點,點在面所在的平面內(nèi),若平面分別與平面和平面所成的銳二面角相等,則點到點的最短距離是( )
A. B. C. 1 D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某小區(qū)為了提高小區(qū)內(nèi)人員的讀書興趣,特舉辦讀書活動,準備進一定量的書籍豐富小區(qū)圖書站,由于不同年齡段需要看不同類型的書籍,為了合理配備資源,現(xiàn)對小區(qū)看書人員進行年齡調(diào)查,隨機抽取了一天40名讀書者進行調(diào)查,將他們的年齡分成6段: , , , , , 后得到如圖所示的頻率分布直方圖,問:
(1)在40名讀書者中年齡分布在的人數(shù);
(2)估計40名讀書者年齡的平均數(shù)和中位數(shù);
(3)若從年齡在的讀書者中任取2名,求這兩名讀書者年齡在的人數(shù)的分布列和數(shù)學期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com