【題目】如圖為半圓的直徑,點(diǎn)是半圓弧上的兩點(diǎn), .曲線經(jīng)過點(diǎn),且曲線上任意點(diǎn)滿足為定值.

(Ⅰ)求曲線的方程;

(Ⅱ)設(shè)過點(diǎn)的直線與曲線交于不同的兩點(diǎn),求面積最大時(shí)的直線的方程.

【答案】(1);(2)

【解析】試題分析:(1)先求P點(diǎn)坐標(biāo),再根據(jù)兩點(diǎn)間距離公式求,最后根據(jù)橢圓定義確定a,c,b(2)先設(shè),與橢圓方程聯(lián)立,結(jié)合韋達(dá)定理以及弦長公式求EF,根據(jù)點(diǎn)到直線距離公式求高,再根據(jù)三角形面積公式得面積關(guān)于k的函數(shù)關(guān)系式,最后根據(jù)基本不等式求最值,根據(jù)等號(hào)成立條件確定直線的方程

試題解析(Ⅰ)根據(jù)橢圓的定義,曲線是以為焦點(diǎn)的橢圓,其中.

,

,曲線的方程為;

(Ⅱ)設(shè)過點(diǎn)的直線的斜率為,則.

,

,

點(diǎn)到直線的距離, 的面積 .

,則.

當(dāng)且僅當(dāng),即時(shí),面積取最大值.

此時(shí)直線的方程為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,且a2=2b.

(1)求橢圓的方程;

(2)直線l:x﹣y+m=0與橢圓交于A,B兩點(diǎn),是否存在實(shí)數(shù)m,使線段AB的中點(diǎn)在圓x2+y2=5上,若存在,求出m的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】—只螞蟻在三邊長分別為,的三角形內(nèi)自由爬行,某時(shí)刻該螞蟻距離三角形的任意一個(gè)頂點(diǎn)的距離不超過的概率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲乙兩人玩猜數(shù)字游戲,先由甲心中任想一個(gè)數(shù)字記為,再由乙猜甲剛才想的數(shù)字,把乙猜的數(shù)字記為,且、.若,則稱甲乙“心有靈犀”.現(xiàn)任意找兩人玩這個(gè)游戲,則二人“心有靈犀”的概率為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,定義域?yàn)?/span>上的函數(shù)是由一條射線及拋物線的一部分組成.利用該圖提供的信息解決下面幾個(gè)問題.

1)求的解析式;

2)若關(guān)于的方程有三個(gè)不同解,求的取值范圍;

3)若,求的取值集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】,,表示空間中三條不同的直線,表示平面, 給出下列命題:

,, ; ② ,, ;

,, ; ④ , , .

其中真命題的序號(hào)是( )

A. ①② B. ②③ C. ①④ D. ②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校舉行了一次安全教育知識(shí)競賽,競賽的原始成績采用百分制.已知高三學(xué)生的原始成績均分布在內(nèi)發(fā)布成績使用等級(jí)制,各等級(jí)劃分標(biāo)準(zhǔn)見表.

原始成績

85分及以上

70分到84

60分到69

60分以下

等級(jí)

優(yōu)秀

良好

及格

不及格

為了解該校高三年級(jí)學(xué)生安全教育學(xué)習(xí)情況,從中抽取了名學(xué)生的原始成績作為樣本進(jìn)行統(tǒng)計(jì)按照的分組作出頻率分布直方圖如圖所示,其中等級(jí)為不及格的有5人,優(yōu)秀的有3人.

1)求和頻率分布直方圖中的的值

2)根據(jù)樣本估計(jì)總體的思想,以事件發(fā)生的頻率作為相應(yīng)事件發(fā)生的概率,若在該校高三學(xué)生中任選3人,求至少有1人成績是及格以上等級(jí)的概率;

3)在選取的樣本中,從原始成績?cè)?/span>80分以上的學(xué)生中隨機(jī)抽取3名學(xué)生進(jìn)行學(xué)習(xí)經(jīng)驗(yàn)介紹,記表示抽取的3名學(xué)生中優(yōu)秀等級(jí)的學(xué)生人數(shù),求隨機(jī)變量的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐的底面是正方形, 平面,,點(diǎn)上的點(diǎn),且 .

(1)求證:對(duì)任意的 ,都有.

(2)設(shè)二面角C-AE-D的大小為 ,直線BE與平面所成的角為 ,

,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在R上的函數(shù)fx)滿足:對(duì)任意都有,且當(dāng)x>0時(shí),

1)求的值,并證明為奇函數(shù);

2)判斷函數(shù)的單調(diào)性,并證明;

3)若對(duì)任意恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案