【題目】已知ab為常數(shù),且a≠0,f(x)=ax2bx,f(2)=0,方程f(x)=x有兩個(gè)相等實(shí)數(shù)根.

(1)求函數(shù)f(x)的解析式;

(2)當(dāng)x[1,2]時(shí),求f(x)的值域;

【答案】(1) f(x)=-x2x. (2)

【解析】

(1)f(2)0,方程f(x)x有兩個(gè)相等實(shí)數(shù)根,建立關(guān)于的二元一次方程組,求出的值;(2)利用二次函數(shù)的單調(diào)性求f(x)的值域.

解:(1)f(x)=ax2bx.

f(2)=0,得4a+2b=0,即2ab=0

方程f(x)=x,即ax2bxx

ax2+(b-1)x=0有兩個(gè)相等實(shí)根,且a≠0,

b-1=0,b=1,代入①得a=-.

f(x)=-x2x.

(2)(1)f(x)=- (x-1)2.

顯然函數(shù)f(x)[1,2]上是減函數(shù),

x=1時(shí),ymax,x=2時(shí),ymin=0.

x[1,2]時(shí),函數(shù)的值域是

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)的圖象恒過(0,0)(1,1)兩點(diǎn),則稱函數(shù)“0-1函數(shù)”.

(1)判斷下面兩個(gè)函數(shù)是否是“0-1函數(shù),并簡要說明理由:

; .

(2)若函數(shù)“0-1函數(shù),求;

(3)設(shè) ,定義在R上的函數(shù)滿足:① , R,均有; “0-1函數(shù),求函數(shù)的解析式及實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市“網(wǎng)約車”的現(xiàn)行計(jì)價(jià)標(biāo)準(zhǔn)是:路程在以內(nèi)(含)按起步價(jià)元收取,超過后的路程按元/收取,但超過后的路程需加收的返空費(fèi)(即單

價(jià)為元/).

(1) 將某乘客搭乘一次“網(wǎng)約車”的費(fèi)用(單位:元)表示為行程,

單位:)的分段函數(shù);

(2) 某乘客的行程為,他準(zhǔn)備先乘一輛“網(wǎng)約車”行駛后,再換乘另一輛

“網(wǎng)約車”完成余下行程,請問:他這樣做是否比只乘一輛“網(wǎng)約車”完成全部行程更省錢?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知Sn為數(shù)列{an}的前n項(xiàng)和,且有a1=1,Sn+1=an+1(n∈N*).
(1)求數(shù)列{an}的通項(xiàng)an;
(2)若bn= ,求數(shù)列{bn}的前n項(xiàng)和Tn;
(3)設(shè)ck= ,{ck}的前n項(xiàng)和為An , 是否存在最小正整數(shù)m,使得不等式An<m對任意正整數(shù)n恒成立?若存在,求出m的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)ax2bxc,且f(1)=-,3a2c2b,求證:

(1)a0,且-3<-

(2)函數(shù)f(x)在區(qū)間(0,2)內(nèi)至少有一個(gè)零點(diǎn);

(3)設(shè)x1,x2是函數(shù)f(x)的兩個(gè)零點(diǎn),則≤|x1x2|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知過拋物線的焦點(diǎn),斜率為的直線交拋物線于兩點(diǎn),且.

(1)求該拋物線的方程;

(2) 為坐標(biāo)原點(diǎn),為拋物線上一點(diǎn),若,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)為了解高二學(xué)生對“地方歷史”校本課程的喜歡是否與在本地成長有關(guān),在全校高二學(xué)生中隨機(jī)抽取了20名,得到一組不完全的統(tǒng)計(jì)數(shù)據(jù)如下表:

(1)補(bǔ)齊上表數(shù)據(jù),并分別從被抽取的喜歡“地方歷史”校本課程與不喜歡“地方歷史”校本課程的學(xué)生中各選1名做進(jìn)一步訪談,求至少有1名學(xué)生屬于在本地成長的概率;

(2)試回答:能否在犯錯(cuò)誤的概率不超過0.10的前提下認(rèn)為“是否喜歡地方歷史校本課程與在本地成長有關(guān)”.

附:

(參考公式: ,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是定義域?yàn)?/span>的奇函數(shù),滿足,若,________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】運(yùn)貨卡車以每小時(shí)千米的速度勻速行駛130千米 (單位:千米/小時(shí)).假設(shè)汽油的價(jià)格是每升6元,而汽車每小時(shí)耗油升,司機(jī)的工資是每小時(shí)30元.

1)求這次行車總費(fèi)用關(guān)于的表達(dá)式;

2)當(dāng)為何值時(shí),這次行車的總費(fèi)用最低,并求出最低費(fèi)用的值.

查看答案和解析>>

同步練習(xí)冊答案