【題目】如圖,長(zhǎng)方體ABCD﹣A1B1C1D1中,AB=AD=1,AA1=2,點(diǎn)P為DD1的中點(diǎn).

(1)求證:直線BD1∥平面PAC;
(2)求證:平面PAC⊥平面BDD1B1;
(3)求CP與平面BDD1B1所成的角大。

【答案】
(1)證明:設(shè)AC和BD交于點(diǎn)O,連PO,由P,O分別是DD1,BD的中點(diǎn),故PO∥BD1,

∵PO平面PAC,BD1平面PAC,所以,直線BD1∥平面PAC


(2)解:長(zhǎng)方體ABCD﹣A1B1C1D1中,AB=AD=1,底面ABCD是正方形,則AC⊥BD,又DD1⊥面ABCD,則DD1⊥AC.

∵BD平面BDD1B1,D1D平面BDD1B1,BD∩D1D=D,∴AC⊥面BDD1B1.∵AC平面PAC,∴平面PAC⊥平面BDD1B1


(3)解:由(2)已證:AC⊥面BDD1B1,∴CP在平面BDD1B1內(nèi)的射影為OP,∴∠CPO是CP與平面BDD1B1所成的角.

依題意得 ,在Rt△CPO中, ,∴∠CPO=30°

∴CP與平面BDD1B1所成的角為30°


【解析】(1)設(shè)AC和BD交于點(diǎn)O,由三角形的中位線的性質(zhì)可得PO∥BD1 , 從而證明直線BD1∥平面PAC.(2)證明AC⊥BD,DD1⊥AC,可證AC⊥面BDD1B1 , 進(jìn)而證得平面PAC⊥平面BDD1B1 . (3)CP在平面BDD1B1內(nèi)的射影為OP,故∠CPO是CP與平面BDD1B1所成的角,在Rt△CPO中,利用邊角關(guān)系求得∠CPO的大小.
【考點(diǎn)精析】通過(guò)靈活運(yùn)用直線與平面平行的判定和平面與平面垂直的判定,掌握平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行;簡(jiǎn)記為:線線平行,則線面平行;一個(gè)平面過(guò)另一個(gè)平面的垂線,則這兩個(gè)平面垂直即可以解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,三棱柱中,已知側(cè)面 , .

(1)求證: 平面;

(2)是棱上的一點(diǎn),若二面角的正弦值為,求線段的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓,定點(diǎn),點(diǎn)為圓上的動(dòng)點(diǎn),點(diǎn)在直線上,點(diǎn)在直線上,且滿足.

(1)求點(diǎn)的軌跡的方程;

(2)過(guò)點(diǎn)作斜率為的直線,與曲線交于兩點(diǎn), 是坐標(biāo)原點(diǎn),是否存在這樣的直線,使得,若存在,求出直線的斜率的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】執(zhí)行如圖程序框圖,如果輸入的a=4,b=6,那么輸出的n=(

A.3
B.4
C.5
D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,圓C:x2+y2﹣8y+12=0,直線l:ax+y+2a=0.
(1)當(dāng)a為何值時(shí),直線l與圓C相切;
(2)當(dāng)直線l與圓C相交于A、B兩點(diǎn),且AB=2 時(shí),求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在矩形中, 動(dòng)點(diǎn)在以點(diǎn)為圓心且與相切的圓上,若,則的最大值為(

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|< ),其圖象相鄰兩條對(duì)稱軸之間的距離為 ,且函數(shù)f(x+ )是偶函數(shù),下列判斷正確的是(
A.函數(shù)f(x)的最小正周期為2π
B.函數(shù)f(x)的圖象關(guān)于點(diǎn)( ,0)d對(duì)稱
C.函數(shù)f(x)的圖象關(guān)于直線x=﹣ 對(duì)稱
D.函數(shù)f(x)在[ ,π]上單調(diào)遞增

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義平面向量之間的一種運(yùn)算“⊙”如下:對(duì)任意的 ,令 ,下面說(shuō)法錯(cuò)誤的是( )
A.若 共線,則 =0
B. =
C.對(duì)任意的λ∈R,有 =
D.( 2+( 2=| |2| |2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】據(jù)統(tǒng)計(jì),目前微信用戶已達(dá)10億,2016年,諸多傳統(tǒng)企業(yè)大佬紛紛嘗試進(jìn)入微商渠道,讓這個(gè)行業(yè)不斷地走向正規(guī)化、規(guī)范化.2017年3月25日,第五屆中國(guó)微商博覽會(huì)在山東濟(jì)南舜耕國(guó)際會(huì)展中心召開(kāi),力爭(zhēng)為中國(guó)微商產(chǎn)業(yè)轉(zhuǎn)型升級(jí),某品牌飲料公司對(duì)微商銷售情況進(jìn)行中期調(diào)研,從某地區(qū)隨機(jī)抽取6家微商一周的銷售金額(單位:百元)的莖葉圖如圖所示,其中莖為十位數(shù),葉為個(gè)位數(shù).

(1)若銷售金額(單位:萬(wàn)元)不低于平均值的微商定義為優(yōu)秀微商,其余為非優(yōu)秀微商,根據(jù)莖葉圖推斷該地區(qū)110家微商中有幾家優(yōu)秀?

(2)從隨機(jī)抽取的6家微商中再任取2家舉行消費(fèi)者回訪調(diào)查活動(dòng),求恰有1家是優(yōu)秀微商的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案