【題目】為了美化環(huán)境,某公園欲將一塊空地規(guī)劃建成休閑草坪,休閑草坪的形狀為如圖所示的四邊形ABCD.其中AB=3百米,AD=百米,且△BCD是以D為直角頂點(diǎn)的等腰直角三角形.?dāng)M修建兩條小路AC,BD(路的寬度忽略不計(jì)),設(shè)∠BAD=,()

(1)當(dāng)cos時(shí),求小路AC的長(zhǎng)度;

(2)當(dāng)草坪ABCD的面積最大時(shí),求此時(shí)小路BD的長(zhǎng)度.

【答案】(1);(2

【解析】

(1)在△ABD中,由余弦定理可求BD的值,利用同角三角函數(shù)基本關(guān)系式可求sinθ,根據(jù)正弦定理可求sin∠ADB,進(jìn)而可求cos∠ADC的值,在△ACD中,利用余弦定理可求AC的值.

(2)由(1)得:BD2=14﹣6cosθ,根據(jù)三角形面積公式,三角函數(shù)恒等變換的應(yīng)用可求.SABCD=7sin(θ﹣φ),結(jié)合題意當(dāng)θ﹣φ時(shí),四邊形ABCD的面積最大,即θ=φ,此時(shí)cosφ,sinφ,從而可求BD的值.

(1)在中,由,

,又,∴

得:,解得:,

是以為直角頂點(diǎn)的等腰直角三角形 ∴

中, ,

解得:

(2)由(1)得:,

,此時(shí),,且

當(dāng)時(shí),四邊形的面積最大,即,此時(shí),

,即

答:當(dāng)時(shí),小路的長(zhǎng)度為百米;草坪的面積最大時(shí),小路的長(zhǎng)度為百米.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐中,底面是正方形,且四個(gè)側(cè)面均為等邊三角形.延長(zhǎng)至點(diǎn)使,連接,.

1)證明:

2)求二面角平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】田忌賽馬是史記中記載的一個(gè)故事,說(shuō)的是齊國(guó)將軍田忌經(jīng)常與齊國(guó)眾公子賽馬,孫臏發(fā)也們的馬腳力都差不多,都分為上、中、下三等于是孫臏給田忌將軍制定了一個(gè)必勝策略:比賽即將開(kāi)始時(shí),他讓田忌用下等馬對(duì)戰(zhàn)公子們的上等馬,用上等馬對(duì)戰(zhàn)公子們的中等馬,用中等馬對(duì)戰(zhàn)公子們的下等馬,從而使田忌贏得公子們?cè)S多賭注假設(shè)田忌的各等級(jí)馬與某公子的各等級(jí)馬進(jìn)行一場(chǎng)比賽獲勝的概率如表所示:

田忌的馬獲勝概率公子的馬

上等馬

中等馬

下等馬

上等馬

1

中等馬

下等馬

0

比賽規(guī)則規(guī)定:一次比由三場(chǎng)賽馬組成,每場(chǎng)由公子和田忌各出一匹馬出騫,結(jié)果只有勝和負(fù)兩種,并且毎一方三場(chǎng)賽馬的馬的等級(jí)各不相同,三場(chǎng)比賽中至少獲勝兩場(chǎng)的一方為最終勝利者.

如果按孫臏的策略比賽一次,求田忌獲勝的概率;

如果比賽約定,只能同等級(jí)馬對(duì)戰(zhàn),每次比賽賭注1000金,即勝利者贏得對(duì)方1000金,每月比賽一次,求田忌一年賽馬獲利的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某大型商場(chǎng)的空調(diào)在1月到5月的銷售量與月份相關(guān),得到的統(tǒng)計(jì)數(shù)據(jù)如下表:

月份

1

2

3

4

5

銷量(百臺(tái))

0.6

0.8

1.2

1.6

1.8

(1)經(jīng)分析發(fā)現(xiàn)1月到5月的銷售量可用線性回歸模型擬合該商場(chǎng)空調(diào)的月銷量(百件)與月份之間的相關(guān)關(guān)系.請(qǐng)用最小二乘法求關(guān)于的線性回歸方程,并預(yù)測(cè)6月份該商場(chǎng)空調(diào)的銷售量;

(2)若該商場(chǎng)的營(yíng)銷部對(duì)空調(diào)進(jìn)行新一輪促銷,對(duì)7月到12月有購(gòu)買空調(diào)意愿的顧客進(jìn)行問(wèn)卷調(diào)查.假設(shè)該地?cái)M購(gòu)買空調(diào)的消費(fèi)群體十分龐大,經(jīng)過(guò)營(yíng)銷部調(diào)研機(jī)構(gòu)對(duì)其中的500名顧客進(jìn)行了一個(gè)抽樣調(diào)查,得到如下一份頻數(shù)表:

有購(gòu)買意愿對(duì)應(yīng)的月份

7

8

9

10

11

12

頻數(shù)

60

80

120

130

80

30

現(xiàn)采用分層抽樣的方法從購(gòu)買意愿的月份在7月與12月的這90名顧客中隨機(jī)抽取6名,再?gòu)倪@6人中隨機(jī)抽取3人進(jìn)行跟蹤調(diào)查,求抽出的3人中恰好有2人是購(gòu)買意愿的月份是12月的概率.

參考公式與數(shù)據(jù):線性回歸方程,其中,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲乙兩人各有三張卡片,甲的卡片分別標(biāo)有數(shù)字1、2、3,乙的卡片分別標(biāo)有數(shù)字0、1、3.兩人各自隨機(jī)抽出一張,甲抽出的卡片上的數(shù)字記為,乙抽出的卡片上的數(shù)字記為,則的積為奇數(shù)的概率為________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=(3-x)ex,g(x)=x+a(a∈R)(e是自然對(duì)數(shù)的底數(shù),e≈2.718…).

(1)求函數(shù)f(x)的極值;

(2)若函數(shù)y=f(x)g(x)在區(qū)間[1,2]上單調(diào)遞增,求實(shí)數(shù)a的取值范圍;

(3)若函數(shù)h(x)=在區(qū)間(0,+∞)上既存在極大值又存在極小值,并且函數(shù)h(x)的極大值小于整數(shù)b,求b的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖為我國(guó)數(shù)學(xué)家趙爽3世紀(jì)初在為《周髀算經(jīng)》作注時(shí)驗(yàn)證勾股定理的示意圖,現(xiàn)在提供5種顏色給其中5個(gè)小區(qū)域涂色,規(guī)定每個(gè)區(qū)域只涂一種顏色,相鄰區(qū)域顏色不同,則區(qū)域涂色不相同的概率為  

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列函數(shù)既是奇函數(shù),又在上單調(diào)遞增的是  

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平行四邊形中,,,EA的中點(diǎn)(如圖1),將沿CD折起到圖2的位置,得到四棱錐是

1)求證:平面PDA;

2)若PD與平面ABCD所成的角為.且為銳角三角形,求平面PAD和平面PBC所成銳二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案