【題目】如圖,四棱錐中,底面是正方形,且四個側(cè)面均為等邊三角形.延長至點使,連接,.
(1)證明:;
(2)求二面角平面角的余弦值.
【答案】(1)證明見解析;(2)
【解析】
(1)連接,交于點,連接,推導(dǎo)出平面,從而,由此能證明.
(2)以為原點,為軸,為軸,為軸,建立空間直角坐標系,利用向量法能求出二面角的余弦值.
(1)連接,交于點,連接,如圖
∵底面是正方形
∴
∵四棱錐中四個側(cè)面均為等邊三角形
∴
又,故為、的中點
∴
∵
∴平面
∵,為的中點
∴
∴平面
∴
(2)以為原點,為軸,為軸,為軸,建立空間直角坐標系,
設(shè),則,0,,,,,,,,,0,,
,0,,,,,,,,
設(shè)平面的法向量,,,
則,取,得,1,,
設(shè)平面的法向量,,,
則,取,得,1,,
設(shè)二面角的平面角為,
則.
觀察圖形知二面角的平面角為鈍角
二面角的余弦值為.
科目:高中數(shù)學 來源: 題型:
【題目】圖是一個的方格(其中心的方格線已被劃去).一只青蛙停在格處,從某一時刻起,青蛙每隔一秒鐘就跳到與它所在方格有公共邊的另一方格內(nèi),直至跳到格才停下..若青蛙經(jīng)過每一個方格不超過一次,則青蛙的跳法總數(shù)為________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在一場娛樂晚會上,有5位民間歌手(1至5號)登臺演唱,由現(xiàn)場數(shù)百名觀眾投票選出最受歡迎歌手.各位觀眾須彼此獨立地在選票上選3名歌手,其中觀眾甲是1號歌手的歌迷,他必選1號,不選2號,另在3至5號中隨機選2名.觀眾乙對5位歌手的演唱沒有偏愛,因此在1至5號中隨機選3名歌手.
(1)求觀眾甲選中3號歌手的概率;
(2)表示3號歌手得到觀眾甲、乙的票數(shù)之和,求.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知某公司成本為元,所得的利潤元的幾組數(shù)據(jù)入下.
第一組 | 第二組 | 第三組 | 第四組 | 第五組 | |
1 | 4 | 5 | 2 | 3 | |
2 | 1 | 3 | 4 | 0 |
根據(jù)上表數(shù)據(jù)求得回歸直線方程為:
(1)若這個公司所規(guī)劃的利潤為200萬元,估算一下它的成本可能是多少?(保留1位小數(shù))
(2)在每一組數(shù)據(jù)中,,相差,記為事件;,相差,記為事件;,相差,記為事件.隨機抽兩組進行分析,則抽到有事件發(fā)生的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線的準線與雙曲線相交于、兩點,雙曲線的一條漸近線方程是,點是拋物線的焦點,且是等邊三角形,則該雙曲線的標準方程是( )
A.B.
C.D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的方程為,離心率,且短軸長為4.
求橢圓的方程;
已知,,若直線l與圓相切,且交橢圓E于C、D兩點,記的面積為,記的面積為,求的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了美化環(huán)境,某公園欲將一塊空地規(guī)劃建成休閑草坪,休閑草坪的形狀為如圖所示的四邊形ABCD.其中AB=3百米,AD=百米,且△BCD是以D為直角頂點的等腰直角三角形.擬修建兩條小路AC,BD(路的寬度忽略不計),設(shè)∠BAD=,(,).
(1)當cos=時,求小路AC的長度;
(2)當草坪ABCD的面積最大時,求此時小路BD的長度.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com