【題目】已知函數(shù)

1)當(dāng)時(shí),求的單調(diào)區(qū)間;

2)若函數(shù)在區(qū)間上無(wú)零點(diǎn),求的最小值.

【答案】1)單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為;(2

【解析】

1)當(dāng)時(shí),,令,求出不等式解集,可得單調(diào)遞增區(qū)間,令,求出不等式解集,可得單調(diào)遞減區(qū)間,即可得解;

2)函數(shù)在區(qū)間上無(wú)零點(diǎn),可轉(zhuǎn)化為在區(qū)間恒成立或恒成立,分兩種情況討論,時(shí),通過(guò)放縮法說(shuō)明在區(qū)間上恒成立,時(shí),取特殊值,利用零點(diǎn)存在性定理說(shuō)明在區(qū)間上有零點(diǎn),由此即可得的最小值.

解:(1)當(dāng)時(shí),,定義域?yàn)?/span>,

,

,得,令,得

的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為

2函數(shù)在區(qū)間上無(wú)零點(diǎn),

在區(qū)間上,恒成立或恒成立,

,

,

①當(dāng)時(shí),,

在區(qū)間上,,

,

,

在區(qū)間上,

在區(qū)間上,單調(diào)遞減,

,即,

,

在區(qū)間上恒成立,滿(mǎn)足題意;

②當(dāng)時(shí),,

,

,,

,

上有零點(diǎn),即函數(shù)在區(qū)間上有零點(diǎn),不符合題意.

綜上所述,,此時(shí),函數(shù)在區(qū)間上無(wú)零點(diǎn),

的最小值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某超市春節(jié)大酬賓,購(gòu)物滿(mǎn)100元可參加一次抽獎(jiǎng)活動(dòng),規(guī)則如下:顧客將一個(gè)半徑適當(dāng)?shù)男∏蚍湃肴鐖D所示的容器正上方的人口處,小球在自由落下的過(guò)程中,將3次遇到黑色障礙物,最后落入A袋或B袋中,顧客相應(yīng)獲得袋子里的獎(jiǎng)品.已知小球每次遇到黑色障礙物時(shí),向左向右下落的概率都為.若活動(dòng)當(dāng)天小明在該超市購(gòu)物消費(fèi)108元,按照活動(dòng)規(guī)則,他可參加一次抽獎(jiǎng),則小明獲得A袋中的獎(jiǎng)品的概率為_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知是橢圓的兩個(gè)焦點(diǎn),是橢圓上一點(diǎn),當(dāng)時(shí),有.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)設(shè)過(guò)橢圓右焦點(diǎn)的動(dòng)直線與橢圓交于兩點(diǎn),試問(wèn)在鈾上是否存在與不重合的定點(diǎn),使得恒成立?若存在,求出定點(diǎn)的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)求函數(shù)在點(diǎn)處的切線方程;

2)討論函數(shù)的極值點(diǎn)個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1)若處取得極值,求的值;

2)求在區(qū)間上的最小值;

3)在(1)的條件下,若,求證:當(dāng)時(shí),恒有成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市據(jù)實(shí)際情況主要采取以下四種扶貧方式:第一,以工代賑方式,指政府投資建設(shè)基礎(chǔ)設(shè)施工程,組織貧困地區(qū)群眾參加工程建設(shè)并獲得勞務(wù)報(bào)酬,第二,整村推進(jìn)方式指以貧困村為具體幫扶對(duì)象,幫扶對(duì)口到村,資金安排到村,扶貧效益到戶(hù),第三,科技扶貧方式,指組織科技人員深入貧困鄉(xiāng)村實(shí)地指導(dǎo)、技術(shù)培訓(xùn)等傳授科技知識(shí),第四,移民搬遷方式,指對(duì)目前極少數(shù)居住在生存條件惡劣、自然資源貧乏地區(qū)的特困人口,實(shí)行自愿移民,該市為了2020年更好的完成精準(zhǔn)扶貧各項(xiàng)任務(wù),2020年初在全市貧困戶(hù)(分一般貧困戶(hù)和五特戶(hù)兩類(lèi))中隨機(jī)抽取了5000戶(hù)就目前的主要四種扶貧方式行了問(wèn)卷調(diào)查,支持每種扶貧方式的結(jié)果如表:

調(diào)查的貧困戶(hù)

支持以工代賑戶(hù)數(shù)

支持整村推進(jìn)戶(hù)數(shù)

支持科技扶貧戶(hù)數(shù)

支持移民搬遷戶(hù)數(shù)

一般貧困戶(hù)

1200

1600

200

五特戶(hù)(五保戶(hù)和特困戶(hù))

100

100

已知在被調(diào)查的5000戶(hù)中隨機(jī)抽取一戶(hù)支持整村推進(jìn)的概率為0.36.

(Ⅰ)現(xiàn)用分層抽樣的方法在所有參與調(diào)查的貧困戶(hù)中抽取50戶(hù)進(jìn)行深入訪談,問(wèn)應(yīng)在支持科技扶貧戶(hù)數(shù)中抽取多少戶(hù)?

(Ⅱ)雖然五特戶(hù)在全市的貧困戶(hù)所占比例不大,但本次調(diào)查要有意義,其中這次調(diào)查的五特戶(hù)戶(hù)數(shù)不能低于被調(diào)查總戶(hù)數(shù)的9.2%,已知,求本次調(diào)查有意義的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓 的焦點(diǎn)的坐標(biāo)為, 的坐標(biāo)為且經(jīng)過(guò)點(diǎn), .

1)求橢圓的方程;

(2)設(shè)過(guò)的直線與橢圓交于兩不同點(diǎn),在橢圓上是否存在一點(diǎn),使四邊形為平行四邊形?若存在,求出直線的方程;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】《算法統(tǒng)宗》全稱(chēng)《新編直指算法統(tǒng)宗》,是屮國(guó)古代數(shù)學(xué)名著,程大位著.書(shū)中有如下問(wèn)題:“今有五人均銀四十兩,甲得十兩四錢(qián),戊得五兩六錢(qián).問(wèn):次第均之,乙丙丁各該若干?”意思是:有5人分40兩銀子,甲分104錢(qián),戊分56錢(qián),且相鄰兩項(xiàng)差相等,則乙丙丁各分幾兩幾錢(qián)?(注:1兩等于10錢(qián))(

A.乙分8兩,丙分8兩,丁分8B.乙分82錢(qián),丙分8兩,丁分78錢(qián)

C.乙分92錢(qián),丙分8兩,丁分68錢(qián)D.乙分9兩,丙分8兩,丁分7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為,直線交曲線兩點(diǎn),中點(diǎn).

1)求曲線的直角坐標(biāo)方程和點(diǎn)的軌跡的極坐標(biāo)方程;

2)若,求的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案