【題目】為調(diào)查某地區(qū)老人是否需要志愿者提供幫助,用簡(jiǎn)單隨機(jī)抽樣方法從該地區(qū)調(diào)查了500位老年人,結(jié)果如下:

(Ⅰ)估計(jì)該地區(qū)老年人中,需要志愿者提供幫助的老年人的比例;

(Ⅱ)能否有的把握認(rèn)為該地區(qū)的老年人是否需要志愿者提供幫助與性別有關(guān)?

(Ⅲ)根據(jù)(Ⅱ)的結(jié)論,能否提供更好的調(diào)查方法來估計(jì)該地區(qū)的老年人中,需要志愿者提供幫助的老年人的比例?說明理由.

附:

0.050

0.010

0.001

3.841

6.635

10.828

【答案】(1) ;(2) 有的把握認(rèn)為該地區(qū)的老年人是否需要幫助與性別有關(guān);(3)采用分層抽樣方法比采用簡(jiǎn)單隨機(jī)抽樣方法更好.

【解析】試題分析:(1)由樣本的頻率估計(jì)總體的概率;(2)根據(jù)公式的值對(duì)比臨界值可得結(jié)論;(3)由(2)的結(jié)論知,該地區(qū)老年人是否需要幫助與性別有關(guān),并且從樣本數(shù)據(jù)能看出該地區(qū)男性老年人與女性老年人中需要幫助的比例有明顯差異,因此在調(diào)查時(shí)可按性別分層抽樣.

試題解析:(Ⅰ)調(diào)查的500位老年人中有70位需要志愿者提供幫助,因此該地區(qū)老年人中,需要幫助的老年人的比例的估算值為;

(Ⅱ),由于.

所以有的把握認(rèn)為該地區(qū)的老年人是否需要幫助與性別有關(guān);

(Ⅲ)由(Ⅱ)的結(jié)論知,該地區(qū)老年人是否需要幫助與性別有關(guān),并且從樣本數(shù)據(jù)能看出該地區(qū)男性老年人與女性老年人中需要幫助的比例有明顯差異,因此在調(diào)查時(shí),先確定該地區(qū)老年人中男、女的比例,再把老年人分成男、女兩層并采用分層抽樣方法比采用簡(jiǎn)單隨機(jī)抽樣方法更好.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】據(jù)某市地產(chǎn)數(shù)據(jù)研究的數(shù)據(jù)顯示,2016年該市新建住宅銷售均價(jià)走勢(shì)如下圖所示,為抑制房?jī)r(jià)過快上漲,政府從8月采取宏觀調(diào)控措施,10月份開始房?jī)r(jià)得到很好的抑制.

(1)地產(chǎn)數(shù)據(jù)研究院發(fā)現(xiàn),3月至7月的各月均價(jià)(萬元/平方米)與月份之間具有較強(qiáng)的線性相關(guān)關(guān)系,試建立關(guān)于的回歸方程(系數(shù)精確到0.01);政府若不調(diào)控,依此相關(guān)關(guān)系預(yù)測(cè)第12月份該市新建住宅銷售均價(jià);

(2)地產(chǎn)數(shù)據(jù)研究院在2016年的12個(gè)月份中,隨機(jī)抽取三個(gè)月的數(shù)據(jù)作樣本分析,若關(guān)注所抽三個(gè)月份的所屬季度,記不同季度的個(gè)數(shù)為,求的分布列和數(shù)學(xué)期望.

參考數(shù)據(jù): , , ;

回歸方程中斜率和截距的最小二乘法估計(jì)公式分別為:

.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市為了宣傳環(huán)保知識(shí),舉辦了一次“環(huán)保知識(shí)知多少”的問卷調(diào)查活動(dòng)(一

人答一份).現(xiàn)從回收的年齡在20~60歲的問卷中隨機(jī)抽取了100份,統(tǒng)計(jì)結(jié)果如下面的圖表所示.

年齡

分組

抽取份數(shù)

答對(duì)全卷

的人數(shù)

答對(duì)全卷的人數(shù)

占本組的概率

[20,30)

40

28

0.7

[30,40)

27

0.9

[40,50)

10

4

[50,60]

20

0.1

(1)分別求出, , 的值;

(2)從年齡在答對(duì)全卷的人中隨機(jī)抽取2人授予“環(huán)保之星”,求年齡在的人中至少有1人被授予“環(huán)保之星”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸,與直角坐標(biāo)系取相同的單位長(zhǎng)度建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

(1)化曲線的方程為普通方程,并說明它們分別表示什么曲線;

(2)設(shè)曲線軸的一個(gè)交點(diǎn)的坐標(biāo)為,經(jīng)過點(diǎn)作斜率為1的直線, 交曲線兩點(diǎn),求線段的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),函數(shù)

1)求函數(shù)的值域;

2)若對(duì)于任意的,總存在,使得成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)拋物線的頂點(diǎn)在坐標(biāo)原點(diǎn),焦點(diǎn)軸上,過點(diǎn)的直線交拋物線于兩點(diǎn),線段的長(zhǎng)度為8, 的中點(diǎn)到軸的距離為3.

(1)求拋物線的標(biāo)準(zhǔn)方程;

(2)設(shè)直線軸上的截距為6,且拋物線交于兩點(diǎn),連結(jié)并延長(zhǎng)交拋物線的準(zhǔn)線于點(diǎn),當(dāng)直線恰與拋物線相切時(shí),求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從5名男生和4名女生中選出4人去參加座談會(huì),問:

(1)如果4人中男生和女生各選2人,有多少種選法?

(2)如果男生中的甲與女生中的乙至少要有1人在內(nèi),有多少種選法?

(3)如果4人中必須既有男生又有女生,有多少種選法?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)設(shè).

①若,曲線處的切線過點(diǎn),求的值;

②若,求在區(qū)間上的最大值.

(2)設(shè), 兩處取得極值,求證: 不同時(shí)成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的焦點(diǎn)在軸上,且橢圓的焦距為2.

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)過點(diǎn)的直線與橢圓交于兩點(diǎn),過軸且與橢圓交于另一點(diǎn) 為橢圓的右焦點(diǎn),求證:三點(diǎn)在同一條直線上.

查看答案和解析>>

同步練習(xí)冊(cè)答案