【題目】濱湖區(qū)擬建一主題游戲園,該游戲園為四邊形區(qū)域ABCD,其中三角形區(qū)城ABC為主題活動(dòng)區(qū),其中∠ACB=60°,∠ABC=45°,AB=12 m;AD、CD為游客通道(不考慮寬度),且∠ADC=120°,通道AD、CD圍成三角形區(qū)域ADC為游客休閑中心,供游客休憩.

(1)求AC的長(zhǎng)度;
(2)記游客通道AD與CD的長(zhǎng)度和為L(zhǎng),求L的最大值.

【答案】
(1)解:由已知由正弦定理,得 ,又∠ACB=60°,∠ABC=45°,AB=12 cm,所以AC= =24m.
(2)解:因?yàn)椤螦DC=120°∠CAD=θ,∠ACD=60°﹣θ,

在△ADC中,由正弦定理得到

所以L=CD+AD=16 [sin(60°﹣θ)+sinθ]=16 [sin60°cosθ﹣cos60°sinθ+sinθ]=16 sin(60°+θ),因0°<θ<60°,當(dāng)θ=30°時(shí),L取到最大值 16 m.


【解析】(1)利用正弦定理,求AC的長(zhǎng)度.(2)求出AD,CD,可得出L關(guān)于θ的關(guān)系式,化簡(jiǎn)后求L的最大值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】國(guó)內(nèi),某知名連接店分店開張營(yíng)業(yè)期間,在固定的時(shí)間段內(nèi)消費(fèi)達(dá)到一定標(biāo)準(zhǔn)的顧客可進(jìn)行一次抽獎(jiǎng)活動(dòng),隨著抽獎(jiǎng)的有效展開,參與抽獎(jiǎng)活動(dòng)的人數(shù)越來越多,該分店經(jīng)理對(duì)開業(yè)前7天參加抽獎(jiǎng)活動(dòng)的人數(shù)進(jìn)行統(tǒng)計(jì), 表示開業(yè)第天參加抽獎(jiǎng)活動(dòng)的人數(shù),得到統(tǒng)計(jì)表格如下:

經(jīng)過進(jìn)一步的統(tǒng)計(jì)分析,發(fā)現(xiàn)具有線性相關(guān)關(guān)系.

(1)如從這7天中隨便機(jī)抽取兩天,求至少有1天參加抽獎(jiǎng)人數(shù)超過10天的概率;

(2)根據(jù)上表給出的數(shù)據(jù),用最小二乘法,求出的線性回歸方程,并估計(jì)若該活動(dòng)持續(xù)10天,共有多少名顧客參加抽獎(jiǎng).

參考公式: , , .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)(xk)ex,

(1)f(x)的單調(diào)區(qū)間;

(2)f(x)在區(qū)間[01]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù).

(1)任取,記“關(guān)于的方程有一個(gè)大于1的根和一個(gè)小于1的根”為事件,求發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,A、B、C的對(duì)邊分別為a、b、c,己知c﹣b=2bcosA.
(1)若a=2 ,b=3,求c;
(2)若C= ,求角B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知為圓上任一點(diǎn),且點(diǎn)

1)若在圓上,求線段的長(zhǎng)及直線的斜率.

2)求的最大值和最小值.

3)若,求的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn,且Sn=2n2+n,n∈N,數(shù)列{bn}滿足an=4log2bn+3,n∈N.

(1)求an,bn;

(2)求數(shù)列{anbn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,內(nèi)角A,B,C所對(duì)的邊長(zhǎng)分別是a,b,c.
(1)若c=2, ,且△ABC的面積 ,求a,b的值;
(2)若sinC+sin(B﹣A)=sin2A,試判斷△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C經(jīng)過點(diǎn)A(﹣2,0),B(0,2),且圓心C在直線y=x上,又直線l:y=kx+1與圓C相交于P、Q兩點(diǎn).
(1)求圓C的方程;
(2)若 =﹣2,求實(shí)數(shù)k的值;
(3)過點(diǎn)(0,4)作動(dòng)直線m交圓C于E,F(xiàn)兩點(diǎn).試問:在以EF為直徑的所有圓中,是否存在這樣的圓P,使得圓P經(jīng)過點(diǎn)M(2,0)?若存在,求出圓P的方程;若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案