【題目】已知函數(shù).
(1)若函數(shù)的最小值為,求的值;
(2)證明: .
【答案】(1);(2)證明見解析.
【解析】試題分析:(1)由題意得,的最小值問題,需要借助于導(dǎo)數(shù),對比極值與端點(diǎn)值確定,而由最值也可確定出未知量;(2)借助第一問,將問題轉(zhuǎn)化成最常見的形式:.
試題解析:(1)的定義域?yàn)?/span>,且.若,則,于是在上單調(diào)遞增,故無最小值,不合題意,若,則當(dāng)時, ;當(dāng)時, .故在上單調(diào)遞減,在上單調(diào)遞增.于是當(dāng)時, 取得最小值.由已知得, 解得.綜上, .
(2)①下面先證當(dāng)時, .因?yàn)?/span>, 所以只要證.由(1)可知, 于是只要證,即只要證, 令,則,當(dāng)時, , 所以在單調(diào)遞增,所以當(dāng)時, ,即,故當(dāng)時,不等式成立 .② 當(dāng)時,由(1)知, 于是有,即,所以, 即,又因?yàn)?/span>, 所以,所以
,綜上,不等式
成立.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱中,底面是邊長為2的等邊三角形, 為的中點(diǎn).
(1)求證: 平面;
(2)若四邊形是正方形,且,求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】重慶因夏長酷熱多伏旱而得名“火爐”,八月是重慶最熱、用電量最高的月份.下圖是沙坪壩區(qū)居民八月份用電量(單位:度)的頻率分布直方圖,其分組區(qū)間依次為:,,,,,,.
(1)求直方圖中的;
(2)根據(jù)直方圖估計(jì)八月份用電量的眾數(shù)和中位數(shù);
(3)在用電量為,,,的四組用戶中,用分層抽樣的方法抽取11戶居民,則用電量在的用戶應(yīng)抽取多少戶?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某廠商調(diào)查甲、乙兩種不同型號電視機(jī)在10個賣場的銷售量(單位:臺),并根據(jù)這10個賣場的銷售情況,得到如圖所示的莖葉圖. 為了鼓勵賣場,在同型號電視機(jī)的銷售中,該廠商將銷售量高于數(shù)據(jù)平均數(shù)的賣場命名為該型號電視機(jī)的“星級賣場”.
(1)求在這10個賣場中,甲型號電視機(jī)的“星級賣場”的個數(shù);
(2)若在這10個賣場中,乙型號電視機(jī)銷售量的平均數(shù)為26.7,求a>b的概率;
(3)若a=1,記乙型號電視機(jī)銷售量的方差為,根據(jù)莖葉圖推斷b為何值時,達(dá)到最值.
(只需寫出結(jié)論)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠為了對新研發(fā)的產(chǎn)品進(jìn)行合理定價,將該產(chǎn)品按事先擬定的價格進(jìn)行試銷,得到一組檢測數(shù)據(jù)(…)如下表所示:
試銷價格 (元) | 4 | 5 | 6 | 7 | 9 | |
產(chǎn)品銷量 (件) | 84 | 83 | 80 | 75 | 68 |
已知變量具有線性負(fù)相關(guān)關(guān)系,且,,現(xiàn)有甲、乙、丙三位同學(xué)通過計(jì)算求得其回歸直線方程分別為:甲,乙,丙,其中有且僅有一位同學(xué)的計(jì)算結(jié)果是正確的( ).
(1)試判斷誰的計(jì)算結(jié)果正確?并求出的值;
(2)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與檢測數(shù)據(jù)的誤差不超過1,則該檢測數(shù)據(jù)是“理想數(shù)據(jù)”,現(xiàn)從檢測數(shù)據(jù)中隨機(jī)抽取2個,為“理想數(shù)據(jù)”的個數(shù),求隨機(jī)變量的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以橢圓的四個頂點(diǎn)為頂點(diǎn)的四邊形的四條邊與共有個交點(diǎn),且這個交點(diǎn)恰好把圓周六等分.
(1)求橢圓的方程;
(2)若直線與相切,且橢圓相交于兩點(diǎn),求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知一圓經(jīng)過點(diǎn),,且它的圓心在直線上.
(I)求此圓的方程;
(II)若點(diǎn)為所求圓上任意一點(diǎn),且點(diǎn),求線段的中點(diǎn)的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若四面體的三組對棱分別相等,即
給出下列結(jié)論:
①四面體每個面的面積相等;
②從四面體每個頂點(diǎn)出發(fā)的三條棱兩兩夾角之和大于 而小于 ;
③連結(jié)四面體每組對棱中點(diǎn)的線段相互垂直平分;
④從四面體每個頂點(diǎn)出發(fā)的三條棱的長可作為一個三角形的三邊長;
其中正確結(jié)論的序號是__________。(寫出所有正確結(jié)論的序號)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校高二奧賽班N名學(xué)生的物理測評成績(滿分120分)分布直方圖如下,已知分?jǐn)?shù)在100~110的學(xué)生數(shù)有21人。
(Ⅰ)求總?cè)藬?shù)N和分?jǐn)?shù)在110~115分的人數(shù)n;
(Ⅱ)現(xiàn)準(zhǔn)備從分?jǐn)?shù)在110~115分的n名學(xué)生(女生占)中任選2人,求其中恰好含有一名女生的概率;
(Ⅲ)為了分析某個學(xué)生的學(xué)習(xí)狀態(tài),對其下一階段的學(xué)習(xí)提供指導(dǎo)性建議,對他前7次考試的數(shù)學(xué)成績x(滿分150分),物理成績y進(jìn)行分析,下面是該生7次考試的成績。
數(shù)學(xué) | 88 | 83 | 117 | 92 | 108 | 100 | 112 |
物理 | 94 | 91 | 108 | 96 | 104 | 101 | 106 |
已知該生的物理成績y與數(shù)學(xué)成績x是線性相關(guān)的,若該生的數(shù)學(xué)成績達(dá)到130分,請你估計(jì)他的物理成績大約是多少?
附:對于一組數(shù)據(jù)其回歸線的斜率和截距的最小二乘估計(jì)分別為.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com