【題目】如圖,在三棱柱中,底面是邊長為2的等邊三角形, 的中點.

(1)求證: 平面

(2)若四邊形是正方形,且,求直線與平面所成角的正弦值.

【答案】(1)詳見解析(2

【解析】試題分析:(1)連AC1,設(shè)AC1A1C相交于點O,先利用中位線定理證明DO∥BC1,再利用線面平行的判定定理證明結(jié)論即可;(2)推導(dǎo)出三棱柱ABC-A1B1C1是正三棱柱,以C為原點,CBx軸,CC1y軸,過C作平面CBB1C1的垂線為z軸,建立空間直角坐標(biāo)系,利用向量法能求出直線A1D與平面CBB1C1所成角的正弦值

試題解析:(1)證明:連結(jié),設(shè)相交于點,連接,則中點,

的中點, ……2

平面. ……4

2)取的中點,連結(jié),則

,故

,平面……8

中點,連結(jié),過點作,則

連結(jié),

為直線與平面所成的角, ……10

即直線與平面所成的角的正弦值為. ……12

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),

(1)當(dāng),,求函數(shù)的單調(diào)區(qū)間

(2)當(dāng),對任意恒成立,求實數(shù)的取值范圍;

(3)設(shè)函數(shù)的圖象在兩點,處的切線分別為,,求實數(shù)最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知動圓過點,且被軸截得的線段長為4,記動圓圓心的軌跡為曲線

1)求曲線的方程;

2)問: 軸上是否存在一定點,使得對于曲線上的任意兩點,當(dāng)時,恒有的面積之比等于?若存在,則求點的坐標(biāo),否則說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線的方程為:為常數(shù)).

(Ⅰ)判斷曲線的形狀;

(Ⅱ)設(shè)直線與曲線交于不同的兩點、,且,求曲線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)求的值域;

(2)設(shè)函數(shù),若對任意,總存在,使得

立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的兩個焦點分別為,,短軸的兩個端點分別為,

1)若為等邊三角形,求橢圓的方程;

2)若橢圓的短軸長為2,過點的直線與橢圓相交于、兩點,且,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知為圓上的動點, ,為定點,

(1)求線段中點M的軌跡方程;

(2)若,求線段中點N的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,空間四邊形ABCD中,E,F,GH分別是AB,BCCD,DA上的點,且滿足

(1)求證:四邊形EFGH是梯形;

(2)若BDa,求梯形EFGH的中位線的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若函數(shù)的最小值為,求的值;

(2)證明: .

查看答案和解析>>

同步練習(xí)冊答案