【題目】已知橢圓的一個焦點為,且離心率為.
(1)求橢圓方程;
(2)斜率為的直線過點F,且與橢圓交于兩點,P為直線上的一點,
若為等邊三角形,求直線的方程.
【答案】(1)(2)或
【解析】試題分析:本題主要考查橢圓的標準方程以及幾何性質、直線與橢圓相交問題、韋達定理、兩點間距離公式、直線的方程等基礎知識,考查學生的分析問題解決問題的能力、轉化能力、計算能力.第一問,利用橢圓的標準方程中a,b,c的關系,焦點坐標,離心率列出方程組,解出a和b,從而得到橢圓的標準方程;第二問,點斜式設出直線方程,由于直線與橢圓交于A,B,則直線與橢圓方程聯(lián)立消參得到關于x的方程,設出A,B點坐標,利用韋達定理,得到, ,再結合兩點間距離公式求出的長,利用中點坐標公式得出AB中點M的坐標,從而求出|MP|的長,利用為正三角形,則,列出等式求出k的值,從而得到直線的方程.
(1)依題意有, .
可得, .
故橢圓方程為. 5分
(2)直線的方程為.
聯(lián)立方程組
消去并整理得.
設, .
故, .
則.
設的中點為.
可得, .
直線的斜率為,又,
所以.
當△為正三角形時,,
可得,
解得.
即直線的方程為,或. 13分
科目:高中數學 來源: 題型:
【題目】將函數的圖象向左平移個單位長度后,再將所得的圖象向下平移一個單位長度得到函數的圖象,且的圖象與直線相鄰兩個交點的距離為,若對任意恒成立,則的取值范圍是 ( )
A. B. C. D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓:過點與點.
(1)求橢圓的方程;
(2)設直線過定點,且斜率為,若橢圓上存在,兩點關于直線對稱,為坐標原點,求的取值范圍及面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某輛汽車以千米/小時的速度在高速公路上勻速行駛(考慮到高速公路行車安全要求)時,每小時的油耗(所需要的汽油量)為升,其中為常數,且.
(1)若汽車以千米/小時的速度行駛時,每小時的油耗為升,欲使每小時的油耗不超過升,求的取值范圍;
(2)求該汽車行駛千米的油耗的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】扇形AOB中心角為,所在圓半徑為,它按如圖(Ⅰ)(Ⅱ)兩種方式有內接矩形CDEF.
(1)矩形CDEF的頂點C、D在扇形的半徑OB上,頂點E在圓弧AB上,頂點F在半徑OA上,設;
(2)點M是圓弧AB的中點,矩形CDEF的頂點D、E在圓弧AB上,且關于直線OM對稱,頂點C、F分別在半徑OB、OA上,設;
試研究(1)(2)兩種方式下矩形面積的最大值,并說明兩種方式下哪一種矩形面積最大?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知點,點,點,動圓與軸相切于點,過點的直線與圓相切于點,過點的直線與圓相切于點(均不同于點),且與交于點,設點的軌跡為曲線.
(1)證明:為定值,并求的方程;
(2)設直線與的另一個交點為,直線與交于兩點,當三點共線時,求四邊形的面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數在點處的切線方程為.
(1)求的值;
(2)已知,當時,恒成立,求實數的取值范圍;
(3)對于在中的任意一個常數,是否存在正數,使得?請說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com