【題目】如圖,在四棱錐中,底面,,是的中點(diǎn).
(1)求證:平面;
(2)求證:平面平面;
(3)若與平面所成角為,求的長.
【答案】(1)見解析(2)見解析(3)
【解析】分析:第一問借助于三角形的中位線構(gòu)造出一個平行四邊形,得到線線平行的結(jié)論,之后借助于線面平行的判定定理得到結(jié)果;第二問借助于勾股定理得到線線垂直的關(guān)系,之后利用線線垂直,結(jié)合面面垂直的判定定理得到結(jié)果;第三問利用線面角的大小,結(jié)合題中的條件,把要求的線段放到一個三角形中,利用相關(guān)結(jié)論求得結(jié)果.
詳解:(1) 證明:取PC的中點(diǎn)N,連接MN,ND,M,N為PB,PC中點(diǎn) ,由已知,,四邊形AMND為平行四邊形,,平面,平面
平面
(2) 底面,底面,
底面為直角梯形,,
又,,,
,平面,平面
平面平面
(3)作于,平面平面且交線為
平面,連接為在平面上的投影,
,,底面且
,,又,與M重合
,M為PB 中點(diǎn),三角形CBP為等腰三角形,
,,的長為
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)在(0, 2π)內(nèi)有兩個不同零點(diǎn)、。
(1)求實(shí)數(shù)的取值范圍;
(2)求的值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)若當(dāng)時,恒成立,求實(shí)數(shù)的取值范圍.
(2)設(shè),求證:當(dāng)時, .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義:若對定義域內(nèi)任意x,都有(a為正常數(shù)),則稱函數(shù)為“a距”增函數(shù).
(1)若,(0,),試判斷是否為“1距”增函數(shù),并說明理由;
(2)若,R是“a距”增函數(shù),求a的取值范圍;
(3)若,(﹣1,),其中kR,且為“2距”增函數(shù),求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)為上的偶函數(shù),為上的奇函數(shù),且.
(1)求的解析式;
(2)若函數(shù)在上只有一個零點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的一個焦點(diǎn)為,且離心率為.
(1)求橢圓方程;
(2)斜率為的直線過點(diǎn)F,且與橢圓交于兩點(diǎn),P為直線上的一點(diǎn),
若為等邊三角形,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某種產(chǎn)品的質(zhì)量用其質(zhì)量指標(biāo)值來衡量)質(zhì)量指標(biāo)值越大表明質(zhì)量越好,且質(zhì)量指標(biāo)值大于或等于102的產(chǎn)品為優(yōu)質(zhì)品.現(xiàn)用兩種新配方(分別稱為配方和配方)做試驗(yàn),各生產(chǎn)了100件這種產(chǎn)品,并測量了每件產(chǎn)品的質(zhì)量指標(biāo)值,得到下面試驗(yàn)結(jié)果:
配方的頻數(shù)分布表:
指標(biāo)值分組 | [90,94) | [94,98) | [98,102) | [102,106) | [106,110] |
頻數(shù) | 8 | 20 | 42 | 22 | 8 |
配方的頻數(shù)分布表:
指標(biāo)值分組 | [90,94) | [94,98) | [98,102) | [102,106] | [106,110] |
頻數(shù) | 4 | 12 | 42 | 32 | 10 |
(1)分別估計(jì)用配方、配方生產(chǎn)的產(chǎn)品的優(yōu)質(zhì)品率;
(2)已知用配方生產(chǎn)的一件產(chǎn)品的利潤(單位:元)與其質(zhì)量指標(biāo)值的關(guān)系為,估計(jì)用配方生產(chǎn)的一件產(chǎn)品的利潤大于的概率,并求用配方生產(chǎn)的上述件產(chǎn)品的平均利潤.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的左焦點(diǎn),離心率為,點(diǎn)為橢圓上任一點(diǎn),且的最小值為.
(1)求橢圓的方程;
(2)若直線過橢圓的左焦點(diǎn),與橢圓交于兩點(diǎn),且的面積為,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)().
(1)當(dāng)時,求函數(shù)在上的最大值和最小值;
(2)當(dāng)時,是否存在正實(shí)數(shù),當(dāng)(是自然對數(shù)底數(shù))時,函數(shù)的最小值是3,若存在,求出的值;若不存在,說明理由;
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com