【題目】《九章算術(shù)》是我國古代的數(shù)學名著,書中有如下問題:“今有五人分五錢,令上二人所得與下三人等.問各得幾何.”其意思為“已知甲、乙、丙、丁、戊五人分5錢,甲、乙兩人所得與丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差數(shù)列.問五人各得多少錢?”(“錢”是古代的一種重量單位).這個問題中,丙所得為(

A.B.1C.D.

【答案】B

【解析】

依題意設(shè)甲、乙、丙、丁、戊所得錢分別為a2d,ad,a,a+d,a+2d,由題意求得a=﹣6d,結(jié)合a2d+ad+a+a+d+a+2d5a5即可得解.

依題意設(shè)甲、乙、丙、丁、戊所得錢分別為a2dad,aa+d,a+2d,

則由題意可知,a2d+ada+a+d+a+2d,即a=﹣6d

a2d+ad+a+a+d+a+2d5a5,∴a1,

故選:B.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)求函數(shù)的單調(diào)遞增區(qū)間;

(2)內(nèi)角的對邊分別為,若,,且,試求角和角.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】《九章算術(shù)·均輸》中有如下問題:今有五人分十錢,令上二人所得與下三人等,問各得幾何.其意思為已知甲、乙、丙、丁、戊五人分10錢,甲、乙兩人所得與丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差數(shù)列,問五人各得多少錢?是古代的一種重量單位).這個問題中,甲所得為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),,其中為自然對數(shù)的底數(shù),.

1)求證:;

2)若對于任意,恒成立,求的取值范圍;

3)若存在,使,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在貫徹中共中央、國務(wù)院關(guān)于精準扶貧政策的過程中,某單位在某市定點幫扶甲、乙兩村各戶貧困戶.為了做到精準幫扶,工作組對這戶村民的年收入情況、勞動能力情況.子女受教育情況、危舊房情況、患病情況等進行調(diào)查.并把調(diào)查結(jié)果轉(zhuǎn)化為各戶的貧困指標.將指標按照,,,,分成五組,得到如圖所示的頻率分布直方圖.規(guī)定若,則認定該戶為“絕對貧困戶”,否則認定該戶為“相對貧困戶”,且當時,認定該戶為“低收入戶”;當時,認定該戶為“亟待幫助戶".已知此次調(diào)查中甲村的“絕對貧困戶”占甲村貧困戶的.

1)完成下面的列聯(lián)表,并判斷是否有的把握認為絕對貧困戶數(shù)與村落有關(guān):

甲村

乙村

總計

絕對貧困戶

相對貧困戶

總計

2)某干部決定在這兩村貧困指標處于的貧困戶中,隨機選取戶進行幫扶,用表示所選戶中“亟待幫助戶”的戶數(shù),求的分布列和數(shù)學期望.

附:,其中.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對于定義域為的函數(shù),如果同時滿足以下三個條件:①任意的,總有;②;③若,,總有成立,則稱函數(shù)為理想函數(shù).

1)證明:若函數(shù)為理想函數(shù),則;

2)證明:函數(shù)是理想函數(shù);

3)證明:若函數(shù)為理想函數(shù),假定存在,使得,則.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)函數(shù)fx=ax2-2xex,其中a≥0

1)當a=時,求fx)的極值點;

2)若fx)在[-1,1]上為單調(diào)函數(shù),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某城市的華為手機專賣店對該市市民使用華為手機的情況進行調(diào)查.在使用華為手機的用戶中,隨機抽取100名,按年齡(單位:歲)進行統(tǒng)計的頻率分布直方圖如圖:

(1)根據(jù)頻率分布直方圖,分別求出樣本的平均數(shù)(同一組數(shù)據(jù)用該區(qū)間的中點值作代表)和中位數(shù)的估計值(均精確到個位);

(2)在抽取的這100名市民中,按年齡進行分層抽樣,抽取20人參加華為手機宣傳活動,再從這20人中年齡在的人群里,隨機選取2人各贈送一部華為手機,求這2名市民年齡都在內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了保障某治療新冠肺炎藥品的主要藥理成分在國家藥品監(jiān)督管理局規(guī)定的值范圍內(nèi),武漢某制藥廠在該藥品的生產(chǎn)過程中,檢驗員在一天中按照規(guī)定從該藥品生產(chǎn)線上隨機抽取20件產(chǎn)品進行檢測,測量其主要藥理成分含量(單位:mg.根據(jù)生產(chǎn)經(jīng)驗,可以認為這條藥品生產(chǎn)線正常狀態(tài)下生產(chǎn)的產(chǎn)品的主要藥理成分含量服從正態(tài)分布Nμ,σ2.在一天內(nèi)抽取的20件產(chǎn)品中,如果有一件出現(xiàn)了主要藥理成分含量在(μ3σ,μ+3σ)之外的藥品,就認為這條生產(chǎn)線在這一天的生產(chǎn)過程可能出現(xiàn)了異常情況,需對本次的生產(chǎn)過程進行檢查.

1)下面是檢驗員在224日抽取的20件藥品的主要藥理成分含量:

10.02

9.78

10.04

9.92

10.14

10.04

9.22

10.13

9.91

9.95

10.09

9.96

9.88

10.01

9.98

9.95

10.05

10.05

9.96

10.12

經(jīng)計算得xi9.96,s0.19;其中xi為抽取的第i件藥品的主要藥理成分含量,i1,2,20.用樣本平均數(shù)作為μ的估計值,用樣本標準差s作為σ的估計值,利用估計值判斷是否需對本次的生產(chǎn)過程進行檢查?

2)假設(shè)生產(chǎn)狀態(tài)正常,記X表示某天抽取的20件產(chǎn)品中其主要藥理成分含量在(μ3σ,μ+3σ)之外的藥品件數(shù),求/span>PX1)及X的數(shù)學期望.

附:若隨機變量Z服從正態(tài)分布Nμ,σ2),則Pμ3σZμ+3σ≈0.99740.997419≈0.95.

查看答案和解析>>

同步練習冊答案