【題目】下面的莖葉圖記錄了甲、乙兩代表隊各10名同學在一次英語聽力比賽中的成績(單位:).已知甲代表隊數(shù)據(jù)的中位數(shù)為76,乙代表隊數(shù)據(jù)的平均數(shù)是75.

1)求的值;

2)若分別從甲、乙兩隊隨機各抽取1名成績不低于80分的學生,求抽到的學生中,甲隊學生成績不低于乙隊學生成績的概率;

3)判斷甲、乙兩隊誰的成績更穩(wěn)定,并說明理由(方差較小者穩(wěn)定).

【答案】1;(2;(3)甲隊的成績穩(wěn)定.

【解析】

1)因為甲代表隊的中位數(shù)為76,其中已知高于76的有77,80,82,88,低于76的有71,71,

65,64,所以

因為乙代表隊的平均數(shù)為75,其中超過75的差值為511,13,14,和為43,少于75的差值為3,5

7,719,和為41,所以;

2)甲隊中成績不低于80的有80,8288;乙隊中成績不低于80的有8086,8889,

乙兩隊各隨機抽取一名,種數(shù)為

其中甲隊學生成績不低于乙隊學生成績的有80,80;82,80;8880;88,86;8888.種數(shù)為3+1+1=5, 所以甲隊學生成績不低于乙隊學生成績的概率為

3)因為甲的平均數(shù)為

,

所以甲的方差

,

又乙的方差

,

因為甲隊的方差小于乙隊的方差,所以甲隊成績較為穩(wěn)定.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),,若函數(shù)6個零點(互不相同),則實數(shù)a的取值范圍為________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】各項均為非負整數(shù)的數(shù)列同時滿足下列條件:

;② ;③的因數(shù)().

(Ⅰ)當時,寫出數(shù)列的前五項;

(Ⅱ)若數(shù)列的前三項互不相等,且時, 為常數(shù),求的值;

(Ⅲ)求證:對任意正整數(shù),存在正整數(shù),使得時, 為常數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】“微信運動”已成為當下熱門的運動方式,小王的微信朋友圈內也有大量好友參與了“微信運動”,他隨機選取了其中的40人(男、女各20人),記錄了他們某一天的走路步數(shù),并將數(shù)據(jù)整理如下:

步數(shù)

性別

0-2000

2001-5000

5001-8000

8001-10000

>10000

1

2

3

6

8

0

2

10

6

2

0.10

0.05

0.025

0.010

2.706

3.841

5.024

6.635

附:

(1)已知某人一天的走路步數(shù)超過8000步被系統(tǒng)評定為“積極型”,否則為“懈怠型”,根據(jù)題意完成下面的列聯(lián)表,并據(jù)此判斷能否有95%以上的把握認為“評定類型”與“性別”有關?

積極型

懈怠型

總計

總計

(2)若小王以這40位好友該日走路步數(shù)的頻率分布來估計其所有微信好友每日走路步數(shù)的概率分布,現(xiàn)從小王的所有微信好友中任選2人,其中每日走路不超過5000步的有人,超過10000步的有人,設,求的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】《高中數(shù)學課程標準》(2017 版)規(guī)定了數(shù)學學科的六大核心素養(yǎng).為了比較甲、乙兩名高二學生的數(shù)學核心素養(yǎng)水平,現(xiàn)以六大素養(yǎng)為指標對二人進行了測驗,根據(jù)測驗結果繪制了雷達圖(如圖,每項指標值滿分為分,分值高者為優(yōu)),則下面敘述正確的是( )

(注:雷達圖(Radar Chart),又可稱為戴布拉圖、蜘蛛網(wǎng)圖(Spider Chart),可用于對研究對象的多維分析)

A.甲的數(shù)據(jù)分析素養(yǎng)高于乙

B.甲的數(shù)學建模素養(yǎng)優(yōu)于數(shù)學抽象素養(yǎng)

C.乙的六大素養(yǎng)中邏輯推理最差

D.乙的六大素養(yǎng)整體水平優(yōu)于甲

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知△ABC的內角A,B,C的對邊分別為a,b,c,且asinB=bsin(A+).

(1)求A;

(2)若b,a,c成等差數(shù)列,△ABC的面積為2,求a.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)討論函數(shù)上的單調性;

2)當時,設為函數(shù)圖象上任意一點.直線的斜率為,求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,點的直角坐標為為參數(shù)).在以原點為極點,軸正半軸為極軸的極坐標中,直線的極坐標方程為

(1)試求出動點的軌跡方程(用普通方程表示)

(2)設點對應的軌跡為曲線,若曲線上存在四個點到直線的距離為1,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在中, 邊上的中線長為3,且, .

(1)求的值;

(2)求外接圓的面積.

查看答案和解析>>

同步練習冊答案