【題目】如圖,等腰梯形中,,中點,以為折痕把折起,使點到達點的位置(平面.

1)證明:;

2)若,求二面角的余弦值.

【答案】1)證明見解析;(2.

【解析】

1)連接,設的中點為,可證,,由線面垂直的判定定理可知平面,于是即可證明

2)由勾股定理可證,建立空間坐標系,求出兩半平面的法向量,計算法向量的夾角,由此即可求出二面角的大小.

1)連接,

的中點為,

,

四邊形為平行四邊形,,

,為等邊三角形,

,,折疊后,

,平面

平面,.

2)由已知得,

,,,

,,則平面

為原點,軸,軸,軸,建立空間直角坐標系,

,,

,

設平面的一個法向量為,

,即,

平面,為平面的一個法向量,

設二面角,則,

由圖可知二面角為鈍角,所以.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】2020年疫情的到來給我們生活學習等各方面帶來種種困難.為了順利迎接高考,省里制定了周密的畢業(yè)年級復學計劃.為了確保安全開學,全省組織畢業(yè)年級學生進行核酸檢測的篩查.學生先到醫(yī)務室進行咽拭子檢驗,檢驗呈陽性者需到防疫部門做進一步檢測.已知隨機抽一人檢驗呈陽性的概率為0.2%,且每個人檢驗是否呈陽性相互獨立,若該疾病患病率為0.1%,且患病者檢驗呈陽性的概率為99%.若某人檢驗呈陽性,則他確實患病的概率(

A.0.99%B.99%C.49.5%.D.36.5%

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)若,求的單調區(qū)間;

2)若處取得最大值,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為,且過點,橢圓的右頂點為,點的坐標為

1)求橢圓的方程;

2)已知縱坐標不同的兩點為橢圓上的兩個點,且,三點共線,線段的中點為,求直線的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓的極坐標方程是,以極點為平面直角坐標系的原點,極軸為軸的正半軸,建立平面直角坐標系,則直線的參數(shù)方程為(為參數(shù)).若直線與圓相交于,兩點,且.

1)求圓的直角坐標方程,并求出圓心坐標和半徑;

2)求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】上世紀末河南出土的以鶴的尺骨(翅骨)制成的“骨笛”(圖1),充分展示了我國古代高超的音律藝術及先進的數(shù)學水平,也印證了我國古代音律與歷法的密切聯(lián)系.2為骨笛測量“春(秋)分”,“夏(冬)至”的示意圖,圖3是某骨笛的部分測量數(shù)據(jù)(骨笛的彎曲忽略不計),夏至(或冬至)日光(當日正午太陽光線)與春秋分日光(當日正午太陽光線)的夾角等于黃赤交角.

由歷法理論知,黃赤交角近1萬年持續(xù)減小,其正切值及對應的年代如下表:

黃赤交角

正切值

0.439

0.444

0.450

0.455

0.461

年代

公元元年

公元前2000

公元前4000

公元前6000

公元前8000

根據(jù)以上信息,通過計算黃赤交角,可估計該骨笛的大致年代是( )

A.公元前2000年到公元元年B.公元前4000年到公元前2000

C.公元前6000年到公元前4000D.早于公元前6000

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,在直角坐標系中,曲線由中心在原點,焦點在軸上的半橢圓和以原點為圓心,半徑為2的半圓構成,以坐標原點為極點,軸正半軸為極軸建立極坐標系.

1)寫出曲線的極坐標方程;

2)已知射線與曲線交于點,點為曲線上的動點,求面積的最大值.

查看答案和解析>>

同步練習冊答案