【題目】在直角坐標系中,直線的參數(shù)方程為(t為參數(shù)),以直角坐標系的點為極點,為極軸,且長度單位相同,建立極坐標系,得曲線的極坐標方程為.
(1)求直線的傾斜角;
(2)若直線與曲線交于,兩點,求的長度.
科目:高中數(shù)學 來源: 題型:
【題目】改編自中國神話故事的動畫電影《哪吒之魔童降世》自7月26日首映,在不到一個月的時間,票房收入就超過了38億元,創(chuàng)造了中國動畫電影的神話.小明和同學相約去電影院觀看《哪吒之魔童降世》,影院的三個放映廳分別在7:30,8:00,8:30開始放映,小明和同學大約在7:40至8:30之間到達影院,且他們到達影院的時間是隨機的,那么他們到達后等待的時間不超過10分鐘的概率是( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖1所示在菱形ABCD中,,,點E是AD的中點,將沿BE折起,使得平面平面BCDE得到如圖2所示的四棱錐,點F為AC的中點.在圖2中
(Ⅰ)證明:平面ABE;
(Ⅱ)求點A到平面BEF的距離.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】中國古代數(shù)學著作《算法統(tǒng)宗》中有這樣一個問題:“三百七十八里關,初行健步不為難,次日腳痛減一半,六朝才得到其關……”其大意為:“某人從距離關口三百七十八里處出發(fā),第一天走得輕快有力,從第二天起,由于腳痛,每天走的路程為前一天的一半,共走了六天到達關口……” 那么該人第一天走的路程為______________
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知當,函數(shù),且,若的圖像與的圖像在第二象限有公共點,且在該點處的切線相同,當實數(shù)變化時,實數(shù)的取值范圍是_______.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知三棱錐P-ABC的平面展開圖中,四邊形ABCD為邊長等于的正方形,△ABE和△BCF均為正三角形,在三棱錐P-ABC中:
(1)證明:平面PAC⊥平面ABC;
(2)若點M為棱PA上一點且,求二面角P-BC-M的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了解某地網(wǎng)民瀏覽購物網(wǎng)站的情況,從該地隨機抽取100名網(wǎng)民進行調查,其中男性、女性人數(shù)分別為45和55.下面是根據(jù)調查結果繪制的網(wǎng)民日均瀏覽購物網(wǎng)站時間的頻率分布直方圖,將日均瀏覽購物網(wǎng)站時間不低于40分鐘的網(wǎng)民稱為“網(wǎng)購達人”,已知“網(wǎng)購達人”中女性有10人.
(1)根據(jù)已知條件完成下面的列聯(lián)表,并判斷是否有90%的把握認為是否為“網(wǎng)購達人”與性別有關;
非網(wǎng)購達人 | 網(wǎng)購達人 | 總計 | |
男 | |||
女 | 10 | ||
總計 |
(2)將上述調査所得到的頻率視為概率,現(xiàn)在從該地的網(wǎng)民中隨機抽取3名,記被抽取的3名網(wǎng)民中的“網(wǎng)購達人”的人數(shù)為X,求X的分布列、數(shù)學期望和方差.
參考公式:,其中.
參考數(shù)據(jù):
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】科赫曲線是一種外形像雪花的幾何曲線,一段科赫曲線可以通過下列操作步驟構造得到,任畫一條線段,然后把它均分成三等分,以中間一段為邊向外作正三角形,并把中間一段去掉,這樣,原來的一條線段就變成了4條小線段構成的折線,稱為“一次構造”;用同樣的方法把每條小線段重復上述步驟,得到16條更小的線段構成的折線,稱為“二次構造”,…,如此進行“次構造”,就可以得到一條科赫曲線.若要在構造過程中使得到的折線的長度達到初始線段的1000倍,則至少需要通過構造的次數(shù)是( ).(取,)
A.16B.17C.24D.25
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓經(jīng)過點,且離心率為,過其右焦點F的直線交橢圓C于M,N兩點,交y軸于E點.若,.
(Ⅰ)求橢圓C的標準方程;
(Ⅱ)試判斷是否是定值.若是定值,求出該定值;若不是定值,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com