【題目】已知兩動(dòng)圓和(),把它們的公共點(diǎn)的軌跡記為曲線,若曲線與軸的正半軸的交點(diǎn)為,且曲線上的相異兩點(diǎn)滿足:.
(1)求曲線的軌跡方程;
(2)證明直線恒經(jīng)過一定點(diǎn),并求此定點(diǎn)的坐標(biāo);
(3)求面積的最大值.
【答案】(1);(2)見解析;(3).
【解析】
(1)設(shè)兩動(dòng)圓的公共點(diǎn)為,由橢圓定義得出曲線是橢圓,并得出、、的值,即可得出曲線的方程;
(2)求出點(diǎn),設(shè)點(diǎn),,對(duì)直線的斜率是否存在分兩種情況討論,在斜率存在時(shí),設(shè)直線的方程為,并將該直線方程與橢圓的方程聯(lián)立,列出韋達(dá)定理,結(jié)合條件并代入韋達(dá)定理求出的值,可得出直線所過點(diǎn)的坐標(biāo),在直線的斜率不存在時(shí),可得出直線的方程為,結(jié)合這兩種情況得出直線所過定點(diǎn)坐標(biāo);
(3)利用韋達(dá)定理求出面積關(guān)于的表達(dá)式,換元,然后利用基本不等式求出的最大值.
(1)設(shè)兩動(dòng)圓的公共點(diǎn)為,則有:.
由橢圓的定義可知的軌跡為橢圓,,,所以曲線的方程是:;
(2)由題意可知:,設(shè),,
當(dāng)的斜率存在時(shí),設(shè)直線,聯(lián)立方程組:
,把②代入①有:,
③,④,
因?yàn)?/span>,所以有,
,把③④代入整理:
,(有公因式)繼續(xù)化簡(jiǎn)得:
,或(舍),
當(dāng)的斜率不存在時(shí),易知滿足條件的直線為:
過定點(diǎn),綜上,直線恒過定點(diǎn);
(3)面積,
由第(2)小題的③④代入,整理得:,
因在橢圓內(nèi)部,所以,可設(shè),
,,(時(shí)取到最大值).
所以面積的最大值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)F1,F(xiàn)2分別為橢圓的左、右焦點(diǎn),點(diǎn)P為橢圓上任意一點(diǎn),P到焦點(diǎn)F2的距離的最大值為,且△PF1F2的最大面積為1.
(Ⅰ)求橢圓C的方程.
(Ⅱ)點(diǎn)M的坐標(biāo)為,過點(diǎn)F2且斜率為k的直線L與橢圓C相交于A,B兩點(diǎn).對(duì)于任意的是否為定值?若是求出這個(gè)定值;若不是說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右頂點(diǎn)分別為,,左、右焦點(diǎn)分別為,,離心率為,點(diǎn),為線段的中點(diǎn).
()求橢圓的方程.
()若過點(diǎn)且斜率不為的直線與橢圓交于、兩點(diǎn),已知直線與相交于點(diǎn),試判斷點(diǎn)是否在定直線上?若是,請(qǐng)求出定直線的方程;若不是,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè),命題p:函數(shù)在內(nèi)單調(diào)遞增;q:函數(shù)僅在處有極值.
(1)若命題q是真命題,求a的取值范圍;
(2)若命題是真命題,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖為正方體ABCD-A1B1C1D1,動(dòng)點(diǎn)M從B1點(diǎn)出發(fā),在正方體表面沿逆時(shí)針方向運(yùn)動(dòng)一周后,再回到B1的運(yùn)動(dòng)過程中,點(diǎn)M與平面A1DC1的距離保持不變,運(yùn)動(dòng)的路程x與l=MA1+MC1+MD之間滿足函數(shù)關(guān)系l=f(x),則此函數(shù)圖象大致是( 。
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)參加項(xiàng)目生產(chǎn)的工人為人,平均每人每年創(chuàng)造利潤(rùn)萬元.根據(jù)現(xiàn)實(shí)的需要,從項(xiàng)目中調(diào)出人參與項(xiàng)目的售后服務(wù)工作,每人每年可以創(chuàng)造利潤(rùn)萬元(),項(xiàng)目余下的工人每人每年創(chuàng)造利圖需要提高
(1)若要保證項(xiàng)目余下的工人創(chuàng)造的年總利潤(rùn)不低于原來名工人創(chuàng)造的年總利潤(rùn),則最多調(diào)出多少人參加項(xiàng)目從事售后服務(wù)工作?
(2)在(1)的條件下,當(dāng)從項(xiàng)目調(diào)出的人數(shù)不能超過總?cè)藬?shù)的時(shí),才能使得項(xiàng)目中留崗工人創(chuàng)造的年總利潤(rùn)始終不低于調(diào)出的工人所創(chuàng)造的年總利潤(rùn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】連續(xù)投骰子兩次得到的點(diǎn)數(shù)分別為m,n,作向量(m,n),則與(1,﹣1)的夾角成為直角三角形內(nèi)角的概率是_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)拋物線的方程為,其中常數(shù),是拋物線的焦點(diǎn).
(1)若直線被拋物線所截得的弦長(zhǎng)為6,求的值;
(2)設(shè)是點(diǎn)關(guān)于頂點(diǎn)的對(duì)稱點(diǎn),是拋物線上的動(dòng)點(diǎn),求的最大值;
(3)設(shè),、是兩條互相垂直,且均經(jīng)過點(diǎn)的直線,與拋物線交于點(diǎn)、,與拋物線交于點(diǎn)、,若點(diǎn)滿足,求點(diǎn)的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的前6項(xiàng)依次成等比數(shù)列,設(shè)公比為q(),數(shù)列從第5項(xiàng)開始各項(xiàng)依次為等差數(shù)列,其中,數(shù)列的前n項(xiàng)和為.
(1)求公比q及數(shù)列的通項(xiàng)公式;
(2)若,求項(xiàng)數(shù)n的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com