【題目】、、是三條不同的直線,、、是三個不同的平面,給出下列四個命題:

①若,,,,則;

②若,,則

③若,是兩條異面直線,,,,則;

④若,,則.

其中正確命題的序號是(

A.①③B.①④C.②③D.②④

【答案】A

【解析】

根據(jù)線面平行的性質(zhì)定理以及空間中平行直線的傳遞性可判斷出命題①的正誤;根據(jù)面面關系可判斷出命題②的正誤;利用線面平行的性質(zhì)定理以及直線與平面垂直的判定定理可判斷出命題③的正誤;根據(jù)線面垂直的判定定理、面面垂直的判定定理可判斷出命題④的正誤.

對于命題①,,,由直線與平面平行的性質(zhì)定理可得

,,由平行線的傳遞性可知,命題①正確;

對于命題②,,,則平面與平面平行或相交,命題②錯誤;

對于命題③,過直線作平面,使得,,,,

,,若,根據(jù)平行線的傳遞性可得,這與題意矛盾,

,,,,又,,

命題③正確;

對于命題④,,,,但、不一定垂直,則不一定垂直,所以也不一定垂直,命題④錯誤.

因此,正確的命題序號為①③.

故選:A.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】設實數(shù),橢圓的右焦點為F,過F且斜率為k的直線交DP、Q兩點,若線段PQ的中點為N,點O是坐標原點,直線ON交直線于點M

若點P的橫坐標為1,求點Q的橫坐標;

求證:;

的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】關于數(shù)列,給出下列命題:①數(shù)列滿足,則數(shù)列為公比為2的等比數(shù)列;②“,的等比中項為是“的充分不必要條件:③數(shù)列是公比為的等比數(shù)列,則其前項和;④等比數(shù)列的前項和為,則,,成等比數(shù)列,其中假命題的序號是(

A.B.②④C.①②④D.①③④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知遞增的等差數(shù)列的前項和為,若,成等比數(shù)列,且.

1)求數(shù)列的通項公式及前項和

2)設,求數(shù)列的前項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1)若關于x的方程僅有1個實數(shù)根,求實數(shù)的取值范圍;

2)若是函數(shù)的極大值點,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若定義在R上的偶函數(shù)滿足,且, ,則函數(shù)的零點個數(shù)是( )

A. 6B. 8C. 2D. 4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某學校為了選拔學生參加“XX市中學生知識競賽,先在本校進行選拔測試,若該校有100名學生參加選拔測試,并根據(jù)選拔測試成績作出如圖所示的頻率分布直方圖.

1)根據(jù)頻率分布直方圖,估算這100名學生參加選拔測試的平均成績;

2)該校推薦選拔測試成績在110以上的學生代表學校參加市知識競賽,為了了解情況,在該校推薦參加市知識競賽的學生中隨機抽取2人,求選取的兩人的選拔成績在頻率分布直方圖中處于不同組的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)為常數(shù).

(1)當時,求函數(shù)的圖象在點處的切線方程;

(2)若函數(shù)有兩個不同的零點,

①當時,求的最小值;

②當時,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點,,設,,其中為坐標原點.

1)設點軸上方,到線段所在直線的距離為,且,求和線段的大。

2)設點為線段的中點,若,且點在第二象限內(nèi),求的取值范圍.

查看答案和解析>>

同步練習冊答案