【題目】對(duì)同學(xué)們而言,冬日的早晨離開(kāi)暖融融的被窩,總是一個(gè)巨大的挑戰(zhàn),而咬牙起床的唯一動(dòng)力,就是上學(xué)能夠不遲到.己知學(xué)校要求每天早晨7:15之前到校,7:15之后到校記為遲到.小明每天6:15會(huì)被媽媽叫醒起味,吃早餐、洗漱等晨間活動(dòng)需要半個(gè)小時(shí),故每天6:45小明就可以出門去上學(xué).從家到學(xué)校的路上,若小明選擇步行到校,則路上所花費(fèi)的時(shí)間相對(duì)準(zhǔn)確,若以隨機(jī)變量(分鐘)表示步行到校的時(shí)間,可以認(rèn)為.若小明選擇騎共享單車上學(xué),雖然騎行速度快于步行,不過(guò)由于車況、路況等不確定因素,路上所需時(shí)間的隨機(jī)性增加,若以隨機(jī)變量(分鐘)描述騎車到校的時(shí)間,可以認(rèn)為.若小明選擇坐公交車上學(xué),速度很快,但是由于等車時(shí)間、路況等不確定因素,路上所需時(shí)間的隨機(jī)性進(jìn)一步增加,若以隨機(jī)變量(分鐘)描述坐公交車到校所需的時(shí)間,則可以認(rèn)為.
(1)若某天小明媽媽出差沒(méi)在家,小明一覺(jué)醒來(lái)已經(jīng)是6:40了,他抓緊時(shí)間洗漱更衣,沒(méi)吃早飯就出發(fā)了,出門時(shí)候是6:50.請(qǐng)問(wèn),小明是否有某種出行方案,能夠保證上學(xué)不遲到?小明此時(shí)的最優(yōu)選擇是什么?
(2)已知共享單車每20分鐘收費(fèi)一元,若小明本周五天都騎共享單車上學(xué),以隨機(jī)變量表示這五天小明上學(xué)騎車的費(fèi)用,求的期望與方差(此小題結(jié)果均保留三位有效數(shù)字)
已知若隨機(jī)變量,則%,%,%.
【答案】(1),三種方案都無(wú)法滿足原則,不能保證上學(xué)不遲到.相對(duì)而言,騎車到校不遲到的概率最高,是最優(yōu)選擇(2)(元),(元2)
【解析】
(1)依題意,小明需要在25分鐘內(nèi)到達(dá)學(xué)校.若他選擇步行到校,則不遲到的概率記為,求出%.若騎車到校,則不遲到概率記為,
(%,%),若坐公交車到校,則不遲到的概率記為,
%.比較即可做出選擇;(2)取隨機(jī)變量表示五天里騎車上學(xué)時(shí)間單程超過(guò)20分鐘的天數(shù).先求出和,再求的期望與方差.
(1)依題意,小明需要在25分鐘內(nèi)到達(dá)學(xué)校.
若他選擇步行到校,則不遲到的概率記為,取,,
則,,
%.
若騎車到校,則不遲到的概率記為,取,,
則,,,
則%,
%,
∴(%,%)
若坐公交車到校,則不遲到的概率記為,取,,
則,,%.
綜上,三種方案都無(wú)法滿足原則,不能保證上學(xué)不遲到.相對(duì)而言,騎車到校不遲到的概率最高,是最優(yōu)選擇.
(2)取隨機(jī)變量表示五天里騎車上學(xué)時(shí)間單程超過(guò)20分鐘的天數(shù).
依題意,每天騎車上學(xué)時(shí)間超過(guò)20分鐘的概率為%,
∴,∴%,
%.
又∵,
∴(元),(元2)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某種植園在芒果臨近成熟時(shí),隨機(jī)從一些芒果樹(shù)上摘下100個(gè)芒果,其質(zhì)量分別在,,,,,(單位:克)中,經(jīng)統(tǒng)計(jì)得頻率分布直方圖如圖所示.
(1)經(jīng)計(jì)算估計(jì)這組數(shù)據(jù)的中位數(shù);
(2)現(xiàn)按分層抽樣從質(zhì)量為,的芒果中隨機(jī)抽取6個(gè),再?gòu)倪@6個(gè)中隨機(jī)抽取3個(gè),求這3個(gè)芒果中恰有1個(gè)在內(nèi)的概率.
(3)某經(jīng)銷商來(lái)收購(gòu)芒果,以各組數(shù)據(jù)的中間數(shù)代表這組數(shù)據(jù)的平均值,用樣本估計(jì)總體,該種植園中還未摘下的芒果大約還有10000個(gè),經(jīng)銷商提出如下兩種收購(gòu)方案:
A:所有芒果以10元/千克收購(gòu);
B:對(duì)質(zhì)量低于250克的芒果以2元/個(gè)收購(gòu),高于或等于250克的以3元/個(gè)收購(gòu),通過(guò)計(jì)算確定種植園選擇哪種方案獲利更多?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,底面為正方形,底面,,為線段的中點(diǎn),若為線段上的動(dòng)點(diǎn)(不含).
(1)平面與平面是否互相垂直?如果是,請(qǐng)證明;如果不是,請(qǐng)說(shuō)明理由;
(2)求二面角的余弦值的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),.
(1)若,求函數(shù)的最值;
(2)討論函數(shù)的零點(diǎn)個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】每年的4月23日為“世界讀書日”,某調(diào)查機(jī)構(gòu)對(duì)某校學(xué)生做了一個(gè)是否喜愛(ài)閱讀的抽樣調(diào)查.該調(diào)查機(jī)構(gòu)從該校隨機(jī)抽查了100名不同性別的學(xué)生(其中男生45名),統(tǒng)計(jì)了每個(gè)學(xué)生一個(gè)月的閱讀時(shí)間,其閱讀時(shí)間(小時(shí))的頻率分布直方圖如圖所示:
(1)求樣本學(xué)生一個(gè)月閱讀時(shí)間的中位數(shù).
(2)已知樣本中閱讀時(shí)間低于的女生有30名,請(qǐng)根據(jù)題目信息完成下面的列聯(lián)表,并判斷能否在犯錯(cuò)誤的概率不超過(guò)0.1的前提下認(rèn)為閱讀與性別有關(guān).
列聯(lián)表
男 | 女 | 總計(jì) | |
總計(jì) |
附表:
0.15 | 0.10 | 0.05 | |
2.072 | 2.706 | 3.841 |
其中:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù), ().
(1)當(dāng)時(shí),若函數(shù)與的圖象在處有相同的切線,求的值;
(2)當(dāng)時(shí),若對(duì)任意和任意,總存在不相等的正實(shí)數(shù),使得,求的最小值;
(3)當(dāng)時(shí),設(shè)函數(shù)與的圖象交于 兩點(diǎn).求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知無(wú)窮數(shù)列{an}(an∈Z)的前n項(xiàng)和為Sn,記S1,S2,…,Sn中奇數(shù)的個(gè)數(shù)為bn.
(1)若an=n,請(qǐng)寫出數(shù)列{bn}的前5項(xiàng);
(2)求證:“a1為奇數(shù),ai(i=2,3,4,…)為偶數(shù)”是“數(shù)列{bn}是單調(diào)遞增數(shù)列”的充分不必要條件;
(3)若ai=bi,i=1,2,3,…,求數(shù)列{an}的通項(xiàng)公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】點(diǎn)P是棱長(zhǎng)為1的正方體ABCD﹣A1B1C1D1的底面A1B1C1D1上一點(diǎn),則的取值范圍是__.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓,直線l不經(jīng)過(guò)坐標(biāo)原點(diǎn)O且不平行與坐標(biāo)軸,l與相交于A,B兩點(diǎn),線段的中點(diǎn)為M.
(1)證明:直線的斜率與直線l的斜率的乘積為定值;
(2)若直線l過(guò)點(diǎn),延長(zhǎng)線與交于點(diǎn)P,若四邊形是平行四邊形,求直線l的斜率;
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com