【題目】已知橢圓的離心率為,,為其左、右頂點,為橢圓上除,外任意一點,若記直線,斜率分別為.

(1)求證:為定值;

(2)若橢圓的長軸長為4,過點作兩條互相垂直的直線,,若恰好為與橢圓相交的弦的中點,求與橢圓相交的弦的中點的橫坐標.

【答案】(1)證明見解析.

(2).

【解析】分析:(1)由題意,,設(shè),表示出,.,.然后又P在橢圓上可得,故 即可;(2)先得出橢圓方程:. 設(shè)與橢圓交點為,,與橢圓交點為,代入橢圓方程作差可得,結(jié)合中點可得.故可得方程,聯(lián)立橢圓即可.

詳解:

(1)由題意,,設(shè),

,.

在橢圓上,∴,;

,∴為定值.

(2)∵,∴,,.

∴橢圓方程為.

設(shè)與橢圓交點為,與橢圓交點為,

②-①得:,

,∴.

,即.

,∴.

方程:,即.

消去.

,∴.

與橢圓相交的弦的中點橫坐標為.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】給出下列五個命題:

①函數(shù)fx=2a2x-1-1的圖象過定點(,-1);

②已知函數(shù)fx)是定義在R上的奇函數(shù),當x≥0時,fx=xx+1),若fa=-2則實數(shù)a=-12

③若loga1,則a的取值范圍是(,1);

④若對于任意xRfx=f4-x)成立,則fx)圖象關(guān)于直線x=2對稱;

⑤對于函數(shù)fx=lnx,其定義域內(nèi)任意x1x2都滿足f

其中所有正確命題的序號是______

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】定義在上的偶函數(shù)滿足,當時,,設(shè)函數(shù),則的圖象所有交點的橫坐標之和為( ).

A. 3B. 4C. 5D. 6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】現(xiàn)有一塊大型的廣告宣傳版面,其形狀是右圖所示的直角梯形.某廠家因產(chǎn)品宣傳的需要,擬投資規(guī)劃出一塊區(qū)域(圖中陰影部分)為產(chǎn)品做廣告,形狀為直角梯形(點在曲線段上,點在線段上).已知, 其中曲線段是以為頂點, 為對稱軸的拋物線的一部分.

(1)建立適當?shù)钠矫嬷苯亲鴺讼,分別求出曲線段與線段的方程;

(2)求該廠家廣告區(qū)域的最大面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】用a代表紅球,b代表藍球,c代表黑球,由加法原理及乘法原理,從1個紅球和1個藍球中取出若干個球的所有取法可由(1+a)(1+b)的展開式1+a+b+ab表示出來,如:“1”表示一個球都不取、“a”表示取出一個紅球,而“ab”則表示把紅球和藍球都取出來.以此類推,下列各式中,其展開式可用來表示從5個無區(qū)別的紅球、5個無區(qū)別的藍球、5個有區(qū)別的黑球中取出若干個球,且所有的藍球都取出或都不取出的所有取法的是(  )
A.(1+a+a2+a3+a4+a5)(1+b5)(1+c)5
B.(1+a5)(1+b+b2+b3+b4+b5)(1+c)5
C.(1+a)5(1+b+b2+b3+b4+b5)(1+c5
D.(1+a5)(1+b)5(1+c+c2+c3+c4+c5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知四棱錐P-ABCD中,底面ABCD為正方形,PA⊥平面ABCD,PA=AB=2,E,F(xiàn)分別是PB,PD的中點.

(I)求證:PB∥平面FAC;

(II)求三棱錐P-EAD的體積;

(III)求證:平面EAD⊥平面FAC.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè) ,已知處有相同的切線.

(1)求, 的解析式;

(2)求上的最小值;

(3)若對, 恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某地擬在一個U形水面PABQ(∠A=B=90°)上修一條堤壩(EAP上,NBQ上),圍出一個封閉區(qū)域EABN,用以種植水生植物.為了美觀起見,決定從AB上點M處分別向點EN2條分隔線ME,MN,將所圍區(qū)域分成3個部分(如圖),每部分種植不同的水生植物.已知AB=a,EM=BM,∠MEN=90°,設(shè)所拉分隔線總長度為l

1)設(shè)∠AME=2θ,求用θ表示的l函數(shù)表達式,并寫出定義域;

2)求l的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)有兩個極值點(為自然對數(shù)的底數(shù)).

(Ⅰ)求實數(shù)的取值范圍;

(Ⅱ)求證.

查看答案和解析>>

同步練習冊答案