【題目】已知函數(shù).

(1)求函數(shù)的定義域;

(2)判斷函數(shù)的奇偶性,并證明你的結(jié)論;

(3)在函數(shù)圖像上是否存在兩個(gè)不同的點(diǎn),使直線(xiàn)垂直軸,若存在,求出兩點(diǎn)坐標(biāo);若不存在,說(shuō)明理由.

【答案】(1) 函數(shù)的定義域?yàn)?/span>;(2)見(jiàn)解析;(3)見(jiàn)解析.

【解析】試題分析:(1)根據(jù)函數(shù)的解析式有意義的原則,結(jié)合對(duì)數(shù)的真數(shù)部分必須大于0,構(gòu)造關(guān)于x的不等式組,解不等式組,即可得到答案;

(2)根據(jù)函數(shù)奇偶性的定義,利用對(duì)數(shù)的運(yùn)算性質(zhì),判斷f(﹣x)與f(x)的關(guān)系,即可得到函數(shù)f(x)的奇偶性;

(3) 假設(shè)函數(shù)圖象上存在兩點(diǎn)A(,),, 使直線(xiàn)垂直軸,則,

經(jīng)推理不成立,故不存在.

試題解析:

(1) 由 ,

∴ 函數(shù)的定義域?yàn)?/span>

(2) f (-x)= + lg– lg=-f (x),

f (x)是奇函數(shù)

(3)假設(shè)函數(shù)圖象上存在兩點(diǎn)A(,),,

使直線(xiàn)AB恰好與y軸垂直,其中

即當(dāng)時(shí), , 不妨設(shè),

于是

, , 與矛盾.

故函數(shù)圖象上不存在兩個(gè)不同的點(diǎn)A、B,使直線(xiàn)AB垂直y軸.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如果函數(shù)f(x)=ax2+2x﹣3在區(qū)間(﹣∞,4)上是單調(diào)遞增的,則實(shí)數(shù)a的取值范圍是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=alnx﹣x2+1. (Ⅰ)若曲線(xiàn)y=f(x)在x=1處的切線(xiàn)方程為4x﹣y+b=0,求實(shí)數(shù)a和b的值;
(Ⅱ)討論函數(shù)f(x)的單調(diào)性;
(Ⅲ)若a<0,且對(duì)任意x1 , x2∈(0,+∞),x1≠x2 , 都有|f(x1)﹣f(x2)|>|x1﹣x2|,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=cos(x)cos(x),g(x)=sin 2x.

(1)求函數(shù)f(x)的最小正周期;

(2)求函數(shù)h(x)=f(x)-g(x)的最大值,并求使h(x)取得最大值的x的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)的圖象如圖所示,為了得到函數(shù)的圖象,可以把函數(shù)的圖象( )

A. 每個(gè)點(diǎn)的橫坐標(biāo)縮短到原來(lái)的(縱坐標(biāo)不變),再向左平移個(gè)單位

B. 每個(gè)點(diǎn)的橫坐標(biāo)縮短到原來(lái)的2倍(縱坐標(biāo)不變),再向左平移個(gè)單位

C. 先向左平移個(gè)單位,再把所得各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍(縱坐標(biāo)不變)

D. 先向左平移個(gè)單位,再把所得各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的(縱坐標(biāo)不變)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD是梯形,四邊形CDEF是矩形,且平面ABCD⊥平面CDEF,∠BAD=∠CDA=90°,AB=AD=DE= CD=2,M是線(xiàn)段AE上的動(dòng)點(diǎn).
(Ⅰ)試確定點(diǎn)M的位置,使AC∥平面MDF,并說(shuō)明理由;
(Ⅱ)在(Ⅰ)的條件下,求平面MDF將幾何體ADE﹣BCF分成的兩部分的體積之比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知線(xiàn)段的端點(diǎn),端點(diǎn)在圓上運(yùn)動(dòng)

()求線(xiàn)段的中點(diǎn)的軌跡方程.

() 設(shè)動(dòng)直線(xiàn)與圓交于兩點(diǎn),問(wèn)在軸正半軸上是否存在定點(diǎn),使得直線(xiàn)與直線(xiàn)關(guān)于軸對(duì)稱(chēng)?若存在,請(qǐng)求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1)當(dāng)時(shí),函數(shù)恰有兩個(gè)不同的零點(diǎn),求實(shí)數(shù)的值;

2)當(dāng)時(shí),

若對(duì)于任意,恒有,求的取值范圍;

,求函數(shù)在區(qū)間上的最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知中心在原點(diǎn)的橢圓,右焦點(diǎn)(1,0),且過(guò)
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)求斜率為2的一組平行弦的中點(diǎn)軌跡方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案