【題目】設點,動圓經(jīng)過點且和直線相切,記動圓的圓心的軌跡為曲線.
(1)求曲線的方程;
(2)設曲線上一點的橫坐標為,過的直線交于另一點,交軸于點,過點作的垂線交于另一點.若是的切線,求的最小值.
【答案】(1) ;(2) .
【解析】試題分析:(1)根據(jù)拋物線的定義,求出拋物線的解析式即可;(2)求出直線的方程,求出的坐標,聯(lián)立方程組,求出的坐標,求出直線的斜率,得到關于的不等式,求出的范圍即可.
試題解析:(1)過點作直線垂直于直線于點,由題意得,
所以動點的軌跡是以為焦點、直線為準線的拋物線.
所以拋物線的方程為.
(2)由題意知,過點的直線斜率存在且不為0,設其為.
則,當,則.
聯(lián)立方程,整理得: .
即: ,解得或.
∴,而,∴直線斜率為.
∴ ,
聯(lián)立方程,
整理得: ,
即: , ,
解得: ,或.
∴
∴ .
而拋物線在點處切線斜率: ,
是拋物線的切線, ∴,
整理得,
∴,解得 (舍去),或,∴.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)(其中, 為常數(shù), 為自然對數(shù)的底數(shù)).
(1)討論函數(shù)的單調(diào)性;
(2)設曲線在處的切線為,當時,求直線在軸上截距的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】甲、乙等五名奧運志愿者被隨機地分到A,B,C,D四個不同的崗位服務,每個崗位至少有一名志愿者.
(1)求甲、乙兩人同時參加A崗位服務的概率;
(2)求甲、乙兩人不在同一個崗位服務的概率;
(3)設隨機變量ξ為這五名志愿者中參加A崗位服務的人數(shù),求ξ的分布列.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】我市某礦山企業(yè)生產(chǎn)某產(chǎn)品的年固定成本為萬元,每生產(chǎn)千件該產(chǎn)品需另投入萬元,設該企業(yè)年內(nèi)共生產(chǎn)此種產(chǎn)品千件,并且全部銷售完,每千件的銷售收入為萬元,且
(Ⅰ)寫出年利潤(萬元)關于產(chǎn)品年產(chǎn)量(千件)的函數(shù)關系式;
(Ⅱ)問:年產(chǎn)量為多少千件時,該企業(yè)生產(chǎn)此產(chǎn)品所獲年利潤最大?
注:年利潤=年銷售收入-年總成本.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}為等比數(shù)列,其前n項和為Sn , 已知a1+a4=﹣ ,且對于任意的n∈N*有Sn , Sn+2 , Sn+1成等差數(shù)列;
(1)求數(shù)列{an}的通項公式;
(2)已知bn=n(n∈N+),記 ,若(n﹣1)2≤m(Tn﹣n﹣1)對于n≥2恒成立,求實數(shù)m的范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了了解小學生的體能情況,抽取了某校一個年級的部分學生進行一分鐘跳繩次數(shù)測試,將所得數(shù)據(jù)整理后,畫出頻率分布直方圖(如圖),已知圖中從左到右前三個小組的頻率分別為 0.1,0.3,0.4,第一小組的頻數(shù)為 5.
(1)求第四小組的頻率;
(2)若次數(shù)在 75 次以上(含75 次)為達標,試估計該年級學生跳繩測試的達標率.
(3)在這次測試中,一分鐘跳繩次數(shù)的中位數(shù)落在哪個小組內(nèi)?試求出中位數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,以為極點, 軸的正半軸為極軸建立極坐標系,直線的參數(shù)方程為,曲線的極坐標方程為.
(1)寫出直線的直角坐標方程和曲線的普通方程;
(2)求直線與曲線的交點的直角坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】先后2次拋擲一枚骰子,將得到的點數(shù)分別記為a,b.
(1)求直線ax+by+5=0與圓x2+y2=1相切的概率;
(2)將a,b,5的值分別作為三條線段的長,求這三條線段能圍成等腰三角形的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com