【題目】已知拋物線經(jīng)過點,過A作兩條不同直線,其中直線關于直線對稱.
(1)求拋物線E的方程及其準線方程;
(2)設直線分別交拋物線E于兩點(均不與A重合),若以線段為直徑的圓與拋物線E的準線相切,求直線的方程.
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線的準線過橢圓C:(a>b>0)的左焦點F,且點F到直線l:(c為橢圓焦距的一半)的距離為4.
(1)求橢圓C的標準方程;
(2)過點F做直線與橢圓C交于A,B兩點,P是AB的中點,線段AB的中垂線交直線l于點Q.若,求直線AB的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知為圓上的動點,點在圓的半徑上運動,點在上,且滿足,其中.
(1)求點的軌跡方程;
(2)設不過原點的直線與點的軌跡交于兩點,且點關于恒過定點的直線對稱.求面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知正四棱柱的底面邊長,側棱長,它的外接球的球心為,點 是的中點,點是球上的任意一點,有以下命題:
① 的長的最大值為9;
②三棱錐的體積的最大值是;
③存在過點的平面,截球的截面面積為;
④三棱錐的體積的最大值為20;
⑤過點的平面截球所得的截面面積最大時,垂直于該截面.
其中是真命題的序號是___________
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】海水養(yǎng)殖場進行某水產品的新、舊網(wǎng)箱養(yǎng)殖方法的產量對比,收獲時各隨機抽取了個網(wǎng)箱,測量各水箱產品的產量(單位:kg),其頻率分布直方圖如下圖所示.
(1)若用頻率視為概率,記表示事件“舊養(yǎng)殖法的箱產量低于kg”,求事件的概率;
(2)填寫以下列聯(lián)表,并根據(jù)此判斷是否有的把握認為箱產量與養(yǎng)殖方法有關?
箱產量kg | 箱產量kg | 合計 | |
舊養(yǎng)殖方法 | |||
新養(yǎng)殖方法 | |||
合計 |
(3)根據(jù)箱產量頻率分布直方圖,求新養(yǎng)殖法箱產量的中位數(shù)的估計值(精確到)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知i為虛數(shù)單位,下列說法中正確的是( )
A.若復數(shù)z滿足,則復數(shù)z對應的點在以為圓心,為半徑的圓上
B.若復數(shù)z滿足,則復數(shù)
C.復數(shù)的模實質上就是復平面內復數(shù)對應的點到原點的距離,也就是復數(shù)對應的向量的模
D.復數(shù)對應的向量為,復數(shù)對應的向量為,若,則
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】給出下列四個命題:
①某班級一共有52名學生,現(xiàn)將該班學生隨機編號,用系統(tǒng)抽樣的方法抽取一個容量為4的樣本,已知7號、33號、46號同學在樣本中,那么樣本中另一位同學的編號為23;
②一組數(shù)據(jù)1,2,3,3,4,5的平均數(shù)、眾數(shù)、中位數(shù)都相同;
③一組數(shù)據(jù),0,1,2,3,若該組數(shù)據(jù)的平均值為1,則樣本的標準差為2;
④根據(jù)具有線性相關關系的兩個變量的統(tǒng)計數(shù)據(jù)所得的回歸直線方程為中,,,,則.
其中真命題為( )
A.①②④B.②④C.②③④D.③④
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,直線l的參數(shù)方程為(m為參數(shù)),以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,曲線C的極坐標方程為,直線與曲線C交于M,N兩點.
(1)求直線l的普通方程和曲線C的直角坐標方程;
(2)求|MN|.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com