【題目】下列說法正確的是__________(填序號)
(1)已知相關(guān)變量滿足回歸方程,若變量增加一個單位,則平均增加個單位
(2)若為兩個命題,則“”為假命題是“”為假命題的充分不必要條件
(3)若命題,,則,
(4)已知隨機變量,若,則
【答案】
【解析】
(1)由回歸方程知相關(guān)變量與成負相關(guān),(2) “”為假命題則 同時為假命題,“”為假命題則中至少有一假命題(3)全稱命題與特稱命題轉(zhuǎn)換條件不變,結(jié)論變相反 (4)由正態(tài)曲線的對稱性可解.
(1)由回歸方程知相關(guān)變量與成負相關(guān),若變量增加一個單位,則平均增加個單位,故(1)錯誤
(2) “”為假命題則 同時為假命題,“”為假命題則中至少有一假命題,所以“”為假命題是“”為假命題的充分不必要條件是正確的.故(2)正確
(3)全稱命題與特稱命題轉(zhuǎn)換條件不變,結(jié)論變相反,故(3)錯誤
(4)由正態(tài)曲線的對稱性知,隨機變量,若,對稱軸是 ,則,故(4)錯誤.
故答案為;
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲,乙兩人進行定點投籃活動,已知他們每投籃一次投中的概率分別是和,每次投籃相互獨立互不影響.
(Ⅰ)甲乙各投籃一次,記“至少有一人投中”為事件A,求事件A發(fā)生的概率;
(Ⅱ)甲乙各投籃一次,記兩人投中次數(shù)的和為X,求隨機變量X的分布列及數(shù)學(xué)期望;
(Ⅲ)甲投籃5次,投中次數(shù)為ξ,求ξ=2的概率和隨機變量ξ的數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在 △ABC 中,設(shè) a,b,c 分別是角 A,B,C 的對邊,已知向量 = (a,sinC-sinB),= (b + c,sinA + sinB),且
(1) 求角 C 的大小
(2) 若 c = 3, 求 △ABC 的周長的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,,其中、均為實數(shù).
(Ⅰ)若,求的取值范圍;
(Ⅱ)設(shè),若,在區(qū)間上總存在、使得成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解中學(xué)生對交通安全知識的掌握情況,從農(nóng)村中學(xué)和城鎮(zhèn)中學(xué)各選取100名同學(xué)進行交通安全知識競賽.下圖1和圖2分別是對農(nóng)村中學(xué)和城鎮(zhèn)中學(xué)參加競賽的學(xué)生成績按,,,分組,得到的頻率分布直方圖.
(Ⅰ)分別估算參加這次知識競賽的農(nóng)村中學(xué)和城鎮(zhèn)中學(xué)的平均成績;
(Ⅱ)完成下面列聯(lián)表,并回答是否有的把握認為“農(nóng)村中學(xué)和城鎮(zhèn)中學(xué)的學(xué)生對交通安全知識的掌握情況有顯著差異”?
成績小于60分人數(shù) | 成績不小于60分人數(shù) | 合計 | |
農(nóng)村中學(xué) | |||
城鎮(zhèn)中學(xué) | |||
合計 |
附:
臨界值表:
0.10 | 0.05 | 0.010 | |
2.706 | 3.841 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】目前,國內(nèi)很多評價機構(gòu)經(jīng)過反復(fù)調(diào)研論證,研制出“增值評價”方式。下面實例是某市對“增值評價”的簡單應(yīng)用,該市教育評價部門對本市所高中按照分層抽樣的方式抽出所(其中,“重點高中”所分別記為,“普通高中”所分別記為),進行跟蹤統(tǒng)計分析,將所高中新生進行了統(tǒng)的入學(xué)測試高考后,該市教育評價部門將人學(xué)測試成績與高考成績的各校平均總分繪制成了雷達圖.點表示學(xué)校入學(xué)測試平均總分大約分,點表示學(xué)校高考平均總分大約分,則下列敘述不正確的是( )
A.各校人學(xué)統(tǒng)一測試的成績都在分以上
B.高考平均總分超過分的學(xué)校有所
C.學(xué)校成績出現(xiàn)負增幅現(xiàn)象
D.“普通高中”學(xué)生成績上升比較明顯
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列前項和為,且.
(1)證明數(shù)列是等比數(shù)列;
(2)設(shè),求數(shù)列的前項和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某網(wǎng)購平臺為了解某市居民在該平臺的消費情況,從該市使用其平臺且每周平均消費額超過100元的人員中隨機抽取了100名,并繪制如圖所示頻率分布直方圖,已知中間三組的人數(shù)可構(gòu)成等差數(shù)列.
(1)求的值;
(2)分析人員對100名調(diào)查對象的性別進行統(tǒng)計發(fā)現(xiàn),消費金額不低于300元的男性有20人,低于300元的男性有25人,根據(jù)統(tǒng)計數(shù)據(jù)完成下列列聯(lián)表,并判斷是否有的把握認為消費金額與性別有關(guān)?
(3)分析人員對抽取對象每周的消費金額與年齡進一步分析,發(fā)現(xiàn)他們線性相關(guān),得到回歸方程.已知100名使用者的平均年齡為38歲,試判斷一名年齡為25歲的年輕人每周的平均消費金額為多少.(同一組數(shù)據(jù)用該區(qū)間的中點值代替)
列聯(lián)表
男性 | 女性 | 合計 | |
消費金額 | |||
消費金額 | |||
合計 |
臨界值表:
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
,其中
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知球的半徑為3,該球的內(nèi)接正三棱錐的體積最大值為,內(nèi)接正四棱錐的體積最大值為,則的值為__________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com