【題目】某地區(qū)高考實(shí)行新方案,規(guī)定:語文、數(shù)學(xué)和英語是考生的必考科目,考生還須從物理、化學(xué)、生物、歷史、地理和政治六個科目中選取三個科目作為選考科目.若一個學(xué)生從六個科目中選出了三個科目作為選考科目,則稱該學(xué)生的選考方案確定;否則,稱該學(xué)生選考方案待確定.例如,學(xué)生甲選擇“物理、化學(xué)和生物”三個選考科目,則學(xué)生甲的選考方案確定,“物理、化學(xué)和生物”為其選考方案.
某學(xué)校為了解高一年級420名學(xué)生選考科目的意向,隨機(jī)選取30名學(xué)生進(jìn)行了一次調(diào)查,統(tǒng)計選考科目人數(shù)如下表:
性別 | 選考方案確定情況 | 物理 | 化學(xué) | 生物 | 歷史 | 地理 | 政治 |
男生 | 選考方案確定的有8人 | 8 | 8 | 4 | 2 | 1 | 1 |
選考方案待確定的有6人 | 4 | 3 | 0 | 1 | 0 | 0 | |
女生 | 選考方案確定的有10人 | 8 | 9 | 6 | 3 | 3 | 1 |
選考方案待確定的有6人 | 5 | 4 | 1 | 0 | 0 | 1 |
(1)估計該學(xué)校高一年級選考方案確定的學(xué)生中選考生物的學(xué)生有多少人?
(2)假設(shè)男生、女生選擇選考科目是相互獨(dú)立的.從選考方案確定的8位男生中隨機(jī)選出1人,從選考方案確定的10位女生中隨機(jī)選出1人,試求該男生和該女生的選考方案中都含有歷史學(xué)科的概率;
(3)從選考方案確定的8名男生中隨機(jī)選出2名,設(shè)隨機(jī)變量求的分布列及數(shù)學(xué)期望.
【答案】(1)140;(2);(3)分布列見解析,.
【解析】
(1)求出30人中選考方案確定的學(xué)生中選考生物的概率,即可估計出結(jié)果;
(2)分別求出選考方案確定的8位男生中和10名女生中各選出1人選考方案中含有歷史學(xué)科的概率,按相互獨(dú)立同時發(fā)生的概率關(guān)系,即可求解;
(3)根據(jù)數(shù)據(jù),求出選考方案確定的男生的選考科目情況,的取值為1,2,求出概率,得到分布列,即可求出結(jié)論.
(1)由題可知,選考方案確定的男生中確定選考生物的學(xué)生有4人,
選考方案確定的女生中確定選考生物的學(xué)生有6人,
該學(xué)校高一年級選考方案確定的學(xué)生中選考生物的學(xué)生有人.
(2)由數(shù)據(jù)可知,選考方案確定的8位男生中選出1人選考方案中含有歷史學(xué)科的概率為;
選考方案確定的10位女生中選出1人選考方案中含有歷史學(xué)科的概率為.
所以該男生和該女生的選考方案中都含有歷史學(xué)科的概率為.
(3)由數(shù)據(jù)可知,選考方案確定的男生中有4人選擇物理、化學(xué)和生物;
有2人選擇物理、化學(xué)和歷史;有1人選擇物理、化學(xué)和地理;
有1人選擇物理、化學(xué)和政治.
由已知得的取值為1,2.
,
或.
所以的分布列為
1 | 2 | |
所以.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在上的函數(shù)滿足: , .若方程有5個實(shí)根,則正數(shù)a的取值范圍是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】這次新冠肺炎疫情,是新中國成立以來在我國發(fā)生的傳播速度最快、感染范圍最廣、防控難度最大的一次重大突發(fā)公共衛(wèi)生事件.中華民族歷史上經(jīng)歷過很多磨難,但從來沒有被壓垮過,而是愈挫愈勇,不斷在磨難中成長,從磨難中奮起.在這次疫情中,全國人民展現(xiàn)出既有責(zé)任擔(dān)當(dāng)之勇、又有科學(xué)防控之智.某校高三學(xué)生也展開了對這次疫情的研究,一名同學(xué)在數(shù)據(jù)統(tǒng)計中發(fā)現(xiàn),從2020年2月1日至2月7日期間,日期和全國累計報告確診病例數(shù)量(單位:萬人)之間的關(guān)系如下表:
日期 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
全國累計報告確診病例數(shù)量(萬人) | 1.4 | 1.7 | 2.0 | 2.4 | 2.8 | 3.1 | 3.5 |
(1)根據(jù)表中的數(shù)據(jù),運(yùn)用相關(guān)系數(shù)進(jìn)行分析說明,是否可以用線性回歸模型擬合與的關(guān)系?
(2)求出關(guān)于的線性回歸方程(系數(shù)精確到0.01).并預(yù)測2月10日全國累計報告確診病例數(shù).
參考數(shù)據(jù):,,,.
參考公式:相關(guān)系數(shù)
回歸方程中斜率和截距的最小二乘估計公式分別為:
,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐中, 底面分別是的中點(diǎn), 在,且.
(1)求證: 平面;
(2)在線段上是否存在點(diǎn),使二面角的大小為?若存在,求出的長;
若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( )
A. 若命題均為真命題,則命題為真命題
B. “若,則”的否命題是“若”
C. 在,“”是“”的充要條件
D. 命題“”的否定為“”
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a∈R,函數(shù)f(x)=(-x2+ax)ex(x∈R).
(1)當(dāng)a=2時,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)f(x)在(-1,1)上單調(diào)遞增,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)的圖象與軸有且只有一個公共點(diǎn),求實(shí)數(shù)的取值范圍;
(2)若對任意成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某調(diào)查機(jī)構(gòu)對全國互聯(lián)網(wǎng)行業(yè)進(jìn)行調(diào)查統(tǒng)計,得到整個互聯(lián)網(wǎng)行業(yè)從業(yè)者年齡分布餅狀圖,90后從事互聯(lián)網(wǎng)行業(yè)崗位分布條形圖,則下列結(jié)論中不正確的是( )
注:90后指1990年及以后出生,80后指1980-1989年之間出生,80前指1979年及以前出生.
A.互聯(lián)網(wǎng)行業(yè)從業(yè)人員中90后占一半以上
B.互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)超過總?cè)藬?shù)的
C.互聯(lián)網(wǎng)行業(yè)中從事運(yùn)營崗位的人數(shù)90后比80前多
D.互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)90后比80后多
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓的左、右頂點(diǎn)分別為,,上頂點(diǎn)為,右焦點(diǎn)為,已知.
(1)證明:.
(2)已知直線的傾斜角為,設(shè)為橢圓上不同于,的一點(diǎn),為坐標(biāo)原點(diǎn),線段的垂直平分線交于點(diǎn),過且垂直于的直線交軸于點(diǎn),若,求直線的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com