【題目】如圖,四棱錐中,底面是平行四邊形,平面平面,,在上.
(1)若點是的中點,求證:平面;
(2)在線段上確定點的位置,使得二面角的余弦值為.
【答案】(1)證明見解析;(2)為線段的中點.
【解析】
(1)取的中點,連接,,易證平面,,取的中點,連接,,證明四邊形為平行四邊形后,再證明即可得證;
(2)以點為原點,建立空間直角坐標(biāo)系,求出各點的坐標(biāo)后,設(shè)即可得,再表示出平面的法向量后即可得方程 ,解方程即可得解.
(1)證明:取的中點,連接,,
由可得,,
又 ,平面,,
取的中點,連接,,
由點是的中點可知四邊形為平行四邊形,,
又 ≌,,即,
又 平面,平面,,
平面.
(2)由平面平面可得平面,
以點為原點,建立如圖空間直角坐標(biāo)系,設(shè),
由已知得,
則可得,,,,
則,,
設(shè)平面的一個法向量為,
則,令則,
設(shè),由可得點,
從而,,
設(shè)平面的一個法向量為,
則令可得,
,解得.
故當(dāng)為線段的中點時,二面角的余弦值為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在P地正西方向8km的A處和正東方向1km的B處各有一條正北方向的公路AC和BD,現(xiàn)計劃在AC和BD路邊各修建一個物流中心E和F,為緩解交通壓力,決定修建兩條互相垂直的公路PE和PF,設(shè)
Ⅰ為減少對周邊區(qū)域的影響,試確定E,F的位置,使與的面積之和最;
Ⅱ為節(jié)省建設(shè)成本,求使的值最小時AE和BF的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點為極點,軸的正半軸為極軸的極坐標(biāo)系中,曲線的極坐標(biāo)方程為.
(1)若,求直線以及曲線的直角坐標(biāo)方程;
(2)若直線與曲線交于兩點,且,求直線的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)討論的單調(diào)性;
(2)若,方程有兩個不同的實數(shù)解,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,已知橢圓的離心率為,且過點. 為橢圓的右焦點, 為橢圓上關(guān)于原點對稱的兩點,連接分別交橢圓于兩點.
⑴求橢圓的標(biāo)準(zhǔn)方程;
⑵若,求的值;
⑶設(shè)直線, 的斜率分別為, ,是否存在實數(shù),使得,若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有人玩擲均勻硬幣走跳棋的游戲,棋盤上標(biāo)有第0站(出發(fā)地),在第1站,第2站,……,第100站. 一枚棋子開始在出發(fā)地,棋手每擲一次硬幣,這枚棋子向前跳動一次,若擲出正向,棋子向前跳一站,若擲出反面,棋子向前跳兩站,直到棋子跳到第99站(失敗收容地)或跳到第100站(勝利大本營),該游戲結(jié)束. 設(shè)棋子跳到第站的概率為.
(1)求,,;
(2)寫出與、的遞推關(guān)系);
(3)求玩該游戲獲勝的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,函數(shù).
(1)若,證明:函數(shù)在區(qū)間上是單調(diào)增函數(shù);
(2)求函數(shù)在區(qū)間上的最大值;
(3)若函數(shù)的圖像過原點,且的導(dǎo)數(shù),當(dāng)時,函數(shù)過點的切線至少有2條,求實數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓,拋物線的準(zhǔn)線與橢圓交于兩點,過線段上的動點作斜率為正的直線與拋物線相切,且交橢圓于兩點.
(Ⅰ)求線段的長及直線斜率的取值范圍;
(Ⅱ)若,求面積的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com