【題目】我國古代數(shù)學(xué)名著《續(xù)古摘奇算法》(楊輝著)一書中有關(guān)于三階幻方的問題:將1, 2, 3, 4, 5, 6, 7, 8, 9分別填入的方格中,使得每一行,每一列及對(duì)角線上的三個(gè)數(shù)的和都相等 (如圖所示),我們規(guī)定:只要兩個(gè)幻方的對(duì)應(yīng)位置(如每行第一列的方格)中的數(shù)字不全相同,就稱為不同的幻方,那么所有不同的三階幻方的個(gè)數(shù)是__________.
8 | 3 | 4 |
1 | 5 | 9 |
6 | 7 | 2 |
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某土特產(chǎn)銷售總公司為了解其經(jīng)營狀況,調(diào)查了其下屬各分公司月銷售額和利潤,得到數(shù)據(jù)如下表:
分公司名稱 | 雅雨 | 雅魚 | 雅女 | 雅竹 | 雅茶 |
月銷售額(萬元) | 3 | 5 | 6 | 7 | 9 |
月利潤額(萬元) | 2 | 3 | 3 | 4 | 5 |
在統(tǒng)計(jì)中發(fā)現(xiàn)月銷售額和月利潤額具有線性相關(guān)關(guān)系.
(1)根據(jù)如下的參考公式與參考數(shù)據(jù),求月利潤額與月銷售額之間的線性回歸方程;
(2)若該總公司還有一個(gè)分公司“雅果”月銷售額為10萬元,試估計(jì)它的月利潤額是多少?
(參考公式: , ,其中: , )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地最近十年糧食需求量逐年上升,下表是部分統(tǒng)計(jì)數(shù)據(jù):
年份 | 2006 | 2008 | 2010 | 2012 | 2014 |
需求量(萬噸) | 236 | 246 | 257 | 276 | 286 |
(1)利用所給數(shù)據(jù)求年需求量與年份之間的回歸方程=x+;
(2)利用(1)中所求出的直線方程預(yù)測(cè)該地2018年的糧食需求量.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是橢圓的左、右焦點(diǎn), 為坐標(biāo)原點(diǎn),點(diǎn)在橢圓上,線段與軸的交點(diǎn)滿足.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)圓是以為直徑的圓,一直線與圓相切,并與橢圓交于不同的兩點(diǎn)、,當(dāng),且滿足時(shí),求的面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了監(jiān)控某種零件的一條生產(chǎn)線的生產(chǎn)過程,檢驗(yàn)員每天從該生產(chǎn)線上隨機(jī)抽取16個(gè)零件,并測(cè)量其尺寸(單位:cm).根據(jù)長期生產(chǎn)經(jīng)驗(yàn),可以認(rèn)為這條生產(chǎn)線正常狀態(tài)下生產(chǎn)的零件的尺寸服從正態(tài)分布.
(1)假設(shè)生產(chǎn)狀態(tài)正常,記X表示一天內(nèi)抽取的16個(gè)零件中其尺寸在
之外的零件數(shù),求;
(2)一天內(nèi)抽檢零件中,如果出現(xiàn)了尺寸在之外的零件,就認(rèn)為這條生產(chǎn)線在這一天的生產(chǎn)過程可能出現(xiàn)了異常情況,需對(duì)當(dāng)天的生產(chǎn)過程進(jìn)行檢查.
下面是檢驗(yàn)員在一天內(nèi)抽取的16個(gè)零件的尺寸:
9.95 | 10.12 | 9.96 | 9.96 | 10.01 | 9.92 | 9.98 | 10.04 |
10.26 | 9.91 | 10.13 | 10.02 | 9.22 | 10.04 | 10.05 | 9.95 |
經(jīng)計(jì)算得, ,其中為抽取的第個(gè)零件的尺寸, .
用樣本平均數(shù)作為的估計(jì)值,用樣本標(biāo)準(zhǔn)差作為的估計(jì)值,利用估計(jì)值判斷是否需對(duì)當(dāng)天的生產(chǎn)過程進(jìn)行檢查?剔除之外的數(shù)據(jù),用剩下的數(shù)據(jù)估計(jì)和(精確到0.01).
附:若隨機(jī)變量服從正態(tài)分布,則,
, .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知某池塘養(yǎng)殖著鯉魚和鯽魚,為了估計(jì)這兩種魚的數(shù)量,養(yǎng)殖者從池塘中捕出這兩種魚各1 000條,給每條魚做上不影響其存活的標(biāo)記,然后放回池塘,待完全混合后,再每次從池塘中隨機(jī)地捕出1 000條魚,記錄下其中有記號(hào)的魚的數(shù)目,立即放回池塘中.這樣的記錄做了10次,并將記錄獲取的數(shù)據(jù)制作成如圖所示的莖葉圖.
(1)根據(jù)莖葉圖計(jì)算有記號(hào)的鯉魚和鯽魚數(shù)目的平均數(shù),并估計(jì)池塘中的鯉魚和鯽魚的數(shù)量;
(2)為了估計(jì)池塘中魚的總質(zhì)量,現(xiàn)按照(1)中的比例對(duì)100條魚進(jìn)行稱重,根據(jù)稱重魚的質(zhì)量介于[0,4.5](單位:千克)之間,將測(cè)量結(jié)果按如下方式分成九組:第一組[0,0.5),第二組[0.5,1),…,第九組[4,4.5].如圖是按上述分組方法得到的頻率分布直方圖的一部分.
①估計(jì)池塘中魚的質(zhì)量在3千克以上(含3千克)的條數(shù);
②若第三組魚的條數(shù)比第二組多7條、第四組魚的條數(shù)比第三組多7條,請(qǐng)將頻率分布直方圖補(bǔ)充完整;
③在②的條件下估計(jì)池塘中魚的質(zhì)量的眾數(shù)及池塘中魚的總質(zhì)量.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)用定義證明函數(shù)在上是增函數(shù);
(2)探究是否存在實(shí)數(shù),使得函數(shù)為奇函數(shù)?若存在,求出的值;若不存在,請(qǐng)說明理由;
(3)在(2)的條件下,解不等式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在某次電影展映活動(dòng)中,展映的影片有科幻片和文藝片兩種類型,統(tǒng)計(jì)一隨機(jī)抽樣調(diào)查的樣本數(shù)據(jù)顯示,100名男性觀眾中選擇科幻片的有60名,女性觀眾中有的選擇文藝片,選擇文藝片的觀眾中男性觀眾和女性觀眾一樣多.
(Ⅰ)根據(jù)以上數(shù)據(jù)完成下列列聯(lián)表
(Ⅱ)能否在犯錯(cuò)誤的概率不超過0.01的前提下,認(rèn)為選擇影片類型與性別有關(guān)?
附:
… | 0.10 | 0.05 | 0.025 | 0.010 | 0.001 | |
… | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(為自然對(duì)數(shù)的底數(shù)),是的導(dǎo)函數(shù).
(Ⅰ)當(dāng)時(shí),求證;
(Ⅱ)是否存在正整數(shù),使得對(duì)一切恒成立?若存在,求出的最大值;若不存在,說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com