【題目】某地最近十年糧食需求量逐年上升,下表是部分統(tǒng)計數(shù)據(jù):

年份

2006

2008

2010

2012

2014

需求量(萬噸)

236

246

257

276

286

(1)利用所給數(shù)據(jù)求年需求量與年份之間的回歸方程x+;

(2)利用(1)中所求出的直線方程預測該地2018年的糧食需求量.

【答案】(1) =6.5(x-2010)+260.2(2)312

【解析】試題分析:(1)首先處理所給的數(shù)據(jù),然后求解回歸方程即可;(2)利用(1)中求得的回歸方程預測該地2018年的糧食需求量即可.

 試題解析:(1)由所給數(shù)據(jù)看出,年需求量與年份之間具有線性相關關系,下面來求回歸方程.為此對數(shù)據(jù)預處理如下:

年份-2010

4

2

0

2

4

需求量-257

21

11

0

19

29

對預處理后的數(shù)據(jù),容易算得

, ,

由上述計算結果,知所求回歸方程為,

.

(2)利用直線方程①,可預測該地2018年的糧食需求量為

(萬噸) (萬噸)

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,側面底面為正三角形,,,點分別為線段、的中點,、分別為線段、上一點,且,.

(1)確定點的位置,使得平面;

(2)試問:直線上是否存在一點,使得平面與平面所成銳二面角的大小為,若存在,求的長;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)若曲線在點處的切線與直線垂直,求的值;

(2)討論方程的實數(shù)根的情況.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2016年時紅軍長征勝利80周年,某市電視臺舉辦紀念紅軍長征勝利80周年知識問答,宣傳長征精神.首先在甲、乙、丙、丁四個不同的公園進行支持簽名活動,其次在各公園簽名的人中按分層抽樣的方式抽取10名幸運之星,每人獲得一個紀念品,其數(shù)據(jù)表格如下:

公園

獲得簽名人數(shù)

45

60

30

15

(Ⅰ)求此活動中各公園幸運之星的人數(shù);

(Ⅱ)從乙和丙公園的幸運之星中任選兩人接受電視臺記者的采訪,求這兩人均來自乙公園的概率;

(Ⅲ)電視臺記者對乙公園的簽名人進行了是否有興趣研究“紅軍長征”歷史的問卷調查,統(tǒng)計結果如下(單位:人):

有興趣

無興趣

合計

25

5

30

15

15

30

合計

40

20

60

據(jù)此判斷能否在犯錯誤的概率不超過0.01的前提下認為有興趣研究“紅軍長征”歷史與性別有關.

臨界值表:

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

參考公式:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某居民區(qū)的物業(yè)部門每月向居民收取衛(wèi)生費,計費方法如下:3人和3人以下的住戶,每戶收取5元;超過3人的住戶,每超出1人加收1.2元.設計一個算法,根據(jù)輸入的人數(shù),計算應收取的衛(wèi)生費,并畫出程序框圖.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)討論函數(shù)的單調性;

(2)若,過分別作曲線的切線,且關于軸對稱,求證: .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】以下四個命題中是假命題的是

A. “昆蟲都是6條腿,竹節(jié)蟲是昆蟲,所以竹節(jié)蟲有6條腿”此推理屬于演繹推理.

B. “在平面中,對于三條不同的直線, ,若 ,將此結論放到空間中也成立” 此推理屬于合情推理.

C. ”是“函數(shù) 存在極值”的必要不充分條件.

D. ,則的最小值為.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】我國古代數(shù)學名著《續(xù)古摘奇算法》(楊輝著)一書中有關于三階幻方的問題:將1, 2, 3, 4, 5, 6, 7, 8, 9分別填入的方格中,使得每一行,每一列及對角線上的三個數(shù)的和都相等 (如圖所示),我們規(guī)定:只要兩個幻方的對應位置(如每行第一列的方格)中的數(shù)字不全相同,就稱為不同的幻方,那么所有不同的三階幻方的個數(shù)是__________.

8

3

4

1

5

9

6

7

2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在直角坐標系中,直線的方程是,圓的參數(shù)方程是為參數(shù)),以原點為極點, 軸的非負半軸為極軸建立極坐標系.

(1)分別求直線和圓的極坐標方程;

(2)射線(其中)與圓交于兩點,與直線交于點,射線與圓交于兩點,與直線交于點,求的最大值.

查看答案和解析>>

同步練習冊答案