【題目】設等差數(shù)列的前項和為,已知,

,則下列結論正確的是( )

A. B.

C. D.

【答案】D

【解析】

由題意構造函數(shù)f(x)=x3+2018x,求出f′(x),判斷出函數(shù)f(x)為單調(diào)遞增函數(shù)且為奇函數(shù),由已知的兩等式得到f(a5﹣1)=1f(a2014﹣1)=﹣1,由f(x)為奇函數(shù)得到f(1﹣a2014)=1,由函數(shù)的單調(diào)性得到a5﹣11﹣a2014相等即a5+a2014=2,然后根據(jù)等差數(shù)列的前n項和的公式表示出S2018,根據(jù)等差數(shù)列的性質(zhì)化簡后,將a5+a2014=2代入即可求出值,再根據(jù)單調(diào)性判斷出a5a2014

解:令f(x)=x3+2018x,則f′(x)=3x2+20180,

得到f(x)在R上單調(diào)遞增,且f(x)為奇函數(shù).

由條件,有f(a5﹣1)=1,f(a2014﹣1)=﹣1,即f(1﹣a2014)=1.

a5﹣1=1﹣a2014,從而a5+a2014=2,

f(a5﹣1)=1,f(a2014﹣1)=﹣1,f(x)在R上單調(diào)遞增,

a5﹣1a2014﹣1,即a5a2014,

故選:D.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知正項等比數(shù)列的前n項和,滿足,則的最小值為

A. B. 3 C. 4 D. 12

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設等差數(shù)列的首項和公差都是非負的整數(shù),項數(shù)不少于3,且各項和為,則這樣的數(shù)列共有

A2個 B3個 C4個 D5個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知橢圓的右焦點為,左、右頂點分別為、,上、下頂點分別為、,連結并延長交橢圓于點,連結,記橢圓的離心率為.

1)若,.

①求橢圓的標準方程;

②求的面積之比.

2)若直線和直線的斜率之積為,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓右焦點為,右頂點為,點在橢圓上,且軸,直線軸于點,若

(1)求橢圓的離心率;

(2)設經(jīng)過點且斜率為的直線與橢圓在軸上方的交點為,圓同時與軸和直線相切,圓心在直線上,且. 求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對于定義在R上函數(shù),有以下四個命題:

1)直線的圖像的公共點個數(shù)一定為1;

2)若在區(qū)間上單調(diào)增函數(shù),在上也是單調(diào)增函數(shù),則函數(shù)R上一定是單調(diào)增函數(shù);

3)若為奇函數(shù),則一定有;

4)若,則函數(shù)一定不是偶函數(shù).

其中正確的命題序號是_______.(請寫出所有正確命題的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】將函數(shù)的圖象向右平移個單位后得到函數(shù)的圖象,則( )

A. 圖象關于直線對稱 B. 圖象關于點中心對稱

C. 在區(qū)間單調(diào)遞增 D. 在區(qū)間上單調(diào)遞減

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,是圓的直徑,垂直圓所在的平面,是圓上的一點.

1)求證:平面 平面

2)若,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列滿足為等比數(shù)列,且

1)求;

2)設,記數(shù)列的前項和為

①求;

②求正整數(shù) k,使得對任意均有.

查看答案和解析>>

同步練習冊答案